
Complexity Upper Bounds
using Permutation Group

theory

Thesis submitted in
partial fulfillment of the degree of

Doctor of Philosophy (Ph.D)

by

Piyush P Kurur

Theoretical Computer Science Group,
The Institute of Mathematical Sciences,

Taramani, Chennai 600 113.

University of Madras
Chennai 600 005

January, 2006



Declaration

I declare that the thesis entitled Complexity Upper Bounds using Permu-
tation Group theory submitted for the degree of Doctor of Philosophy is the
record of the work carried out by me during January 2003 to January 2006
under the guidance of V. Arvind and has not formed the basis for the award
of any degree, diploma, associateship, fellowship, titles in this University or
any other University or other Institution of Higher learning.

Piyush P Kurur January 13, 2006
Theoretical Computer Science Group,
Institute of Mathematical Sciences,
Taramani, Chennai 600 113.



Certificate

I certify that the thesis entitled Complexity Upper Bounds using Permu-
tation Group theory submitted for the degree of Doctor of Philosophy by
Piyush P Kurur is the record of research carried out by him during January
2003 to January 2006 under my guidance and supervision, and that this
work has not formed the basis for the award of any degree, diploma, associ-
ateship, fellowship or other titles in this University or any other University
or Institution of higher learning.

V. Arvind January 13, 2006
Thesis Supervisor
Professor, Theoretical Computer Science
Institute of Mathematical Sciences



Acknowledgements

During my stay at IMSc, I was fortunate to be in the company of some
wonderful people who have directly or indirectly contributed to this thesis.
Firstly I thank Arvind for supervising my work. It was he who introduced
me to many of the fascinating topic in Computer Science. Working with
him was a great experience in itself. In him I found a great teacher, a friend
and a research collaborator. His contribution to this thesis is far more than
what I could express in this limited space.

I had the privilege to learn Computer Science and Mathematics through
some excellent lectures at IMSc. I thank the group at IMSc, especially
Meena Mahajan, R. Ramanujam, Kamal Lodaya and Venkatesh Raman, for
this wonderful research environment.

My visit to Germany as part of the DST-DAAD personnel program
was a great learning experience for which I am indebted. I had the good
fortune to enjoy the hospitality of Johannes Köbler while visiting Humboldt
Universität, Berlin under this program. During this period I had a great
time visiting Universität Paderborn thanks to Joachim von zur Gathen and
Technische Universität Darmstadt thanks to Johannes Buchmann. My visit
to Japan in December 2003 was made memorable due to the time I spent
at the Tokyo Institute of Technology thanks to Osamu Watanabe.

Many individuals and organisations helped me by funding my research
visits. I would like to thank the conference committees of CCC 2002, CCC
2005 (especially Eric Allender and Lance Fortnow) and ANTS VI for their
funds that helped me attend these conferences. I thank the National Board
of Higher Mathematics (NBHM) and the Indian Association for Research in
Computer Sciences (IARCS) for funding some of my research visits.

Finally I would like to thank my friends for making the life in IMSc
memorable and entertaining.

iii



Contents

Acknowledgements iii

Notation vi

1 Introduction 1
1.1 Overview of this thesis . . . . . . . . . . . . . . . . . . . . . . 2

2 Complexity theory 7
2.1 Counting complexity classes . . . . . . . . . . . . . . . . . . . 9

3 Group Theory 14
3.1 Permutation Groups . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Strong generator set . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Transitivity, Blocks and Primitivity . . . . . . . . . . . . . . . 18
3.4 Structure Tree and Structure Forest . . . . . . . . . . . . . . 21

4 The Graph Isomorphism problem 24
4.1 Group theoretic formulation of Graph Isomorphism problem . 25
4.2 Problems related to Graph Isomorphism . . . . . . . . . . . . 26
4.3 Computing the lex-least element of a Coset . . . . . . . . . . 28
4.4 The FINDGROUP problem . . . . . . . . . . . . . . . . . . . . 29
4.5 The complexity of Graph Isomorphism . . . . . . . . . . . . . 32
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Bounded colour multiplicity Graph Isomorphism problem 34
5.1 The Pointwise stabiliser problem . . . . . . . . . . . . . . . . 35
5.2 Characteristic subgroups and Socles . . . . . . . . . . . . . . 38
5.3 Residues and Residual Series . . . . . . . . . . . . . . . . . . 40
5.4 Strong generator set revisited . . . . . . . . . . . . . . . . . . 43

5.4.1 Computing the strong generator set . . . . . . . . . . 45

iv



5.5 The target reduction procedure . . . . . . . . . . . . . . . . . 54
5.5.1 Computing the critical orbits: abelian case . . . . . . 58
5.5.2 Computing the critical orbits: nonabelian case . . . . 62

5.6 Complexity of BCGIb . . . . . . . . . . . . . . . . . . . . . . . 71
5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Computational Galois theory 73
6.1 Galois theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Algebraic numbers and number fields . . . . . . . . . . . . . . 76

6.3.1 Ring of Algebraic Integers . . . . . . . . . . . . . . . . 77
6.4 Basic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4.1 Encoding algebraic entities . . . . . . . . . . . . . . . 79
6.4.2 Factoring polynomials and related problems . . . . . . 81
6.4.3 Algorithms for Galois group computation . . . . . . . 82

6.5 Some useful bounds . . . . . . . . . . . . . . . . . . . . . . . 85
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Testing nilpotence of Galois group 89
7.1 Computing the fields Q∆ . . . . . . . . . . . . . . . . . . . . . 91
7.2 Nilpotence testing for Galois groups . . . . . . . . . . . . . . 95

7.2.1 The nilpotence test . . . . . . . . . . . . . . . . . . . . 99
7.3 Γd-testing for Galois groups . . . . . . . . . . . . . . . . . . . 102
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Chebotarev density theorem and Order finding 106
8.1 Chebotarev density theorem . . . . . . . . . . . . . . . . . . . 107
8.2 Computing the order of the Galois group . . . . . . . . . . . 110
8.3 Computing the order of Galois groups in Γd . . . . . . . . . . 112
8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

9 Computing Galois groups 118
9.1 Computing abelian Galois groups . . . . . . . . . . . . . . . . 119
9.2 Computing simple Galois groups . . . . . . . . . . . . . . . . 123
9.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 125

Index 132

v



Notation

CG(A) the centraliser of A in G, page 14.
Diag (G1 ×G2) diagonal subgroup of G1 ×G2, page 16.
NCLG(A) the normal closure of A in G, page 14.
ResT (G) for simple group T the T -residue of G, page 42.
Soc (G) Socle of G, page 39.
GnH semidirect product of G and H, page 15.
G×H direct product of G and H, page 15.
Sift(g) The sift of g, page 43.
H ↪→ G H embeds into G, page 14.
H ≤ G, G ≥ H H is a subgroup G.
H < G, G > H H ≤ G and H 6= G.
[G : H] the index of H in G for H ≤ G, page 14.
H EG, GDH H is a normal subgroup of G.
H CG, GBH H EG and H 6= G.
[Σ : ∆] index of the block ∆ in Σ, page 19.
αg image of α under a permutation g.
B (Σ/∆) conjugate blocks of ∆ contained in Σ, page 19.
G (∆) pointwise stabiliser of ∆.
Sym (Ω) symmetric group on the set Ω.
G∆ setwise stabiliser of ∆.
Sn Sym ({1, . . . , n}).
[L : K] degree of the extension L/K, page 74.
H (α) height of the algebraic number α, page 77.
OK ring of algebraic integers of number field K.
Fpr unique finite field of cardinality pr.
Q, R, C field of rational, real and complex numbers respectively.
N (a),N (α) norm of the ideal a and αOK respectively, page 78.
dK discriminant of the number field K.
K[X] polynomials in X with coefficients from K.

vi



Kf splitting field of the polynomial f(X) over K, page 75.
Fix (L,G) fixed field of L under G, page 76.

vii



Chapter 1

Introduction

Considerable progress has been made recently in the design of efficient algo-
rithms for computational problems in permutation group theory. Many of
these results exploit the structure of permutation groups. As permutation
groups arise naturally in many computational problems, algorithmic break-
through in this area often led to progress in solving, at least partially, other
computational problems; Graph Isomorphism being a striking example. It
is reasonable to expect that these group-theoretic and algorithmic advances
would lead to better insights into the complexity of computational problems
which are connected to permutation group theory. In this thesis we study
Graph Isomorphism and problems that arise in Galois theory. Our aim is
to use the structural properties of permutation groups together with other
algebraic techniques to prove complexity upper bounds.

Complexity theory is the study of resource bounded computations. Ef-
ficiency is measured in terms of the resource required to solve the problem
as a function of the input size. Two of the most important measures are the
time and space required to solve the problem on a Turing machine. Often
problems have a trivial exponential time brute force algorithm that searches
for a potential solution in the set of all possible solutions. Such exponential
time algorithms are impractical as they take considerable time for solving
instances of reasonable sizes. Following the suggestion of Edmonds [25] it is
widely accepted that computational problems in P, i.e. problems that are
solvable in polynomial time on a deterministic Turing machine, are those
that are tractable. This assumption is called the extended Church-Turing
hypothesis. The complexity class NP is the class of problems that can be
solved on a nondeterministic Turing machine in polynomial time. It is ex-
actly the class of decision problems for which yes instances have polynomial

1



time verifiable certificates. Clearly NP contains the class P but whether this
containment is strict is a central open problem in complexity theory.

An important concept in complexity theory is the notion of completeness.
A problem P in a complexity class C is said to be complete for C if for any
other P ′ in C instance of P ′ can efficiently reduced to P . Problems complete
for a complexity class C are in some sense the hardest problems of C. For the
class NP starting with the work of Cook [23] and Levin [45] and subsequently
Karp [31] many important computational problems have been show to be
complete (see the book of Garey and Johnson [29]). If any of these problems
have polynomial time algorithm then P = NP. Hence a problem being NP-
complete is a strong evidence that it has no efficient (i.e. polynomial time)
algorithm.

Classifying natural problems by showing it to be complete for a com-
plexity class is an important goal in complexity theory. For a computa-
tional problem, proving complexity theoretic upper and lower bounds of-
ten requires novel insights into the mathematics underlying the problem.
The tight classification of the complexity of the permanent [70], determi-
nant [66, 72] are classic examples. Despite serious efforts many problems
still elude such a tight classification.

In this thesis we study the complexity Graph Isomorphism and problems
associated with Galois theory with an aim of classifying these in the frame
work of complexity theory. A common thread that connects these two is the
role of permutation group theory. The structure of permutation groups and
the numerous efficient algorithms for permutation group problems play an
important role in our results.

Permutation groups, apart from being a source of interesting computa-
tional problems, have played important role in algorithms for Graph Iso-
morphism like for example in the polynomial time algorithm of Luks [46] for
bounded valence graphs. Group theory has played important role in various
complexity theoretic results. Babai’s [10] AM∩co-AM upper bounds for ma-
trix group problems and Barrington’s [15] group theoretic characterisation
of NC1 are two classic examples.

1.1 Overview of this thesis

We now give an overview of the thesis. Chapter 2 is a brief survey of
the complexity theory required for this thesis and Chapter 3 develops the
required group theory. For our results on Galois theory we need some results
from algebraic number theory. We describe these in Chapter 6. Our results

2



on Graph Isomorphism and related problems are explained in Chapters 4
and 5. We describe our results on computational problems in Galois theory
in Chapters 7, 8 and 9.

Graph Isomorphism

Given two undirected graphs X1 = (V1, E1) and X2 = (V2, E2) the Graph
Isomorphism problem is to check whether X1 and X2 are isomorphic, i.e.
to check whether there is a one-to-one map f : V1 → V2 such that for every
unordered pair {u, v} from V1, {u, v} ∈ E1 if and only if {f(u), f(v)} ∈ E2.
In this thesis we also study a special case of Graph Isomorphism problem
called the bounded colour multiplicity Graph Isomorphism problem, BCGI for
short. Given two vertex-coloured graphs X1 and X2 such that the number
of vertices with a given colour is less than a constant b, we want to check
whether there is a colour preserving isomorphism, i.e. an isomorphism f
from X1 to X2 such that u ∈ V (X1) and f(u) ∈ V (X2) are of the same
colour. We call this problem bounded colour multiplicity graph isomorphism
problem, BCGIb for short.

In Chapter 4 we show that the Graph Isomorphism problem is in the
complexity class SPP. In fact we prove a more general result: We show that
the generic group theoretic problem FINDGROUP is in the complexity class
FPSPP. As a consequence many interesting problems in permutation group
theory like Graph Isomorphism, Set stabiliser problem and the Hidden sub-
group problem over permutation groups are in SPP (or FPSPP for functional
problems). Computational problem in SPP (or FPSPP in case they are func-
tional problems) are low for many important complexity classes like ⊕P (in
fact ModkP for all k), C=P etc. Hence by proving the Graph Isomorphism
problem to be in SPP we have show it to be low for each of these classes.
Earlier it was not even know whether GI was in ⊕P.

In Chapter 5 we prove that BCGIb is in the ModkL-hierarchy where
the constant k and the level of the hierarchy depends only on b. Recently
Torán [68] has shown the Graph Isomorphism problem to be hard for various
complexity classes. In particular he has proved that BCGI is hard for ModkL
for all k. The graph gadgets that he construct can be used to show the
hardness of BCGI for the entire ModkL-hierarchy [8, Appendix], a stronger
result. Our result on BCGI complements his result and gives a fairly tight
classification of BCGI in terms of logspace counting classes.

Another consequence of our result is on the parallel complexity of BCGI.
Our results improve the NC upper bound of Luks [47] to NC2 (even TC1).

3



Galois theory

Consider a number field K, a field extension of Q the field of rational num-
bers. The Galois group of K, denoted by Gal (K/Q), is the group of field
automorphisms of K that when restricted to Q is identity. For a polynomial
f(X) ∈ Q[X], the splitting field Qf is the smallest extension of Q that con-
tains all the roots of f . By the Galois group of f we mean the Galois group
Gal (Qf/Q).

The Galois group of a degree d polynomial f can be thought of as a
subgroup of Sd, the group of permutations on d objects. This follows from
the fact that the Galois group of f is fully specified by giving its action on
the roots of f .

Computing the Galois group of a polynomial is a fundamental problem
in algorithmic number theory. Often one is interested in verifying whether
the Galois group of a polynomial satisfies certain properties instead of ac-
tually computing the Galois group. Asymptotically, the best algorithm for
computing the Galois group of a polynomial f(X) ∈ Q[X] is due to Lan-
dau [37] and runs in time polynomial in size (f) and the order of the Galois
group of f . Since the Galois group of a polynomial f(X) of degree n can
have n! elements, Landau’s algorithm takes exponential-time in the worst
case.

Besides being a natural computational problem, knowing the Galois
group of a polynomial f or knowing certain properties of the Galois group
of f gives information about the roots of f . A classic example is the seminal
work of Galois showing that a polynomial f is solvable by radicals if and
only if its Galois group is solvable. Thus checking whether a polynomial is
solvable by radicals amounts to checking whether its Galois group is solv-
able and hence has an exponential time algorithm. Landau and Miller [39]
gave a remarkable polynomial time algorithm for solvability checking. This
algorithm manages to check solvability without actually computing the en-
tire Galois group. This remarkable result gives hope that certain non-trivial
properties of Galois groups can be tested efficiently. Chapter 7 deals with
such efficiently testable properties of Galois group. We give polynomial time
algorithms for nilpotence testing and Γd-testing.

We generalise the Landau-Miller algorithm and give a polynomial-time
algorithm for testing whether the Galois group of a given polynomial is in Γd
for constant d. The class of groups Γd often crops up in permutation group
theoretic problems, e.g. Luks’ polynomial-time algorithm [46] for testing
isomorphism of bounded degree graphs.

Even though nilpotent groups are solvable the Landau-Miller solvability

4



test does not give a polynomial time nilpotence test. The Landau-Miller
algorithm gives a way to test whether all composition factors of the Galois
group are abelian. Nilpotence however is a more “global” property in the
sense that it cannot be inferred by knowing the composition factors alone.
In Chapter 7 we give a characterisation of nilpotent permutation groups and
this characterisation yields a polynomial time nilpotence test.

Many computational problems in algebraic number theory are hard. In
the absence of non-trivial upper bounds, conditional results, i.e. results
whose validity depends on widely believed yet unproven conjectures of num-
ber theory, are of great interest. We now look at complexity theoretic results
of this thesis that depend on the validity of the generalised Riemann hypoth-
esis. An important ingredient used in our results is the Chebotarev density
theorem, a result on the distribution of primes. For the complexity theoretic
applications of this thesis we need an effective version of Chebotarev density
theorem due to Lagarias and Odlyzko [35] proved assuming the generalised
Riemann hypothesis.

The problem of interest in Chapter 8 is order finding of Galois groups.
Given a polynomial f(X) ∈ Q[X] we are interested in computing the order
of Gal (f) (or equivalently the degree [Qf : Q] of the extension Qf/Q). For
permutation groups of degree n presented via a generating set, the order
can be computed in time polynomial in n. Hence computing the order is no
more difficult that computing the Galois group and there is an exponential
time algorithm for it. We prove better upper bounds assuming generalised
Riemann hypothesis.

Given a polynomial f(X) ∈ Q[X] we show that there is a polynomial
time algorithm making one query to a #P oracle that computes the order of
the Galois group of f [7]. Furthermore using Stockmeyer’s result on approx-
imating #P functions [64], we show that there is a randomised algorithm
with NP oracle to approximate the order of the Galois group.

For polynomials with Galois group in Γd, d a constant, we give a polyno-
mial time reduction from exact order finding to approximate order finding.
Thus for polynomials with Galois group in Γd, d a constant, we have a ran-
domised algorithm with an NP-oracle to compute the order assuming the
generalised Riemann hypothesis.

Finally in Chapter 9 we give nontrivial upper bounds on computing the
Galois group of some special polynomials. We show that given a polynomial
f(X) ∈ Q[X] with abelian Galois group, there is a randomised algorithm
for computing the Galois group. This we achieve by giving a polynomial
time randomised algorithm for sampling almost uniformly from the Galois
group of f . The effective version of the Chebotarev density theorem plays

5



a crucial role here. The only nontrivial bound of non-abelian Galois group
computation is the following. Given a polynomial f(X) ∈ Q[X] such that
every irreducible factor g of f has non-abelian simple Galois group of small
size, there is a polynomial time deterministic algorithm for computing the
Galois group of f . This result uses a special property of non-abelian semi-
simple groups called Scott’s Lemma (Lemma 3.6) and is unconditional.

6



Chapter 2

Complexity theory

In this chapter we recall the complexity theory required for this thesis. A
detailed presentation is available in any standard textbook on complexity
theory ([13, 14]). The survey article of Fortnow and Homer [27] gives a
historical perspective together with pointers to many important results of
complexity theory.

By an alphabet we mean a finite set Σ of letters. A string of length
n over an alphabet Σ is a finite sequence x1 . . . xn of letters from Σ. For a
string x we will use |x| to denote the length of x. By Σ∗ we mean the set
of all strings over Σ. We will use ε to denote the empty string , the unique
string of length 0. A language over Σ is a subset of Σ∗.

A decision problem is a computational problem where we expect a yes/no
answer for e.g. the Graph Isomorphism problem. By suitably encoding
instances of a problem, any decision problem can be seen as a language
over {0, 1}; the language corresponding to a decision problem is the set of
encodings of input instances which evaluate to “yes”. We will use the terms
language and decision problem interchangeably.

Often computational problem require more than a yes/no answer for e.g.
consider the problem of sorting a list of numbers. The functions of interest
for us are functions from Σ∗ to Σ∗. Again for countable sets A and B by
suitable encoding, functions from A to B can be thought of as functions
from Σ∗ to Σ∗. Computing such functions are called functional problems.

The complexity class P is the class of decision problems that can be
solved in time bounded by a polynomial in the size of its inputs on a Tur-
ing machine. The class P is robust because Turing machines can simulate
other reasonable models of computation with a polynomial time overhead.
Moreover, most natural problems that have polynomial time algorithms are

7



tractable in practice. These properties led Edmonds [25] to suggest P as
the class of tractable problems and is now widely accepted as the extended
Church-Turing hypothesis1. By FP we mean the class of functions from Σ∗

to Σ∗ that can be computed on a polynomial time bounded Turing machine.
There are certain problems for which a candidate solution can be verified

in polynomial time. The complexity class NP captures exactly this. It is the
class of problems that can be solved on a nondeterministic Turing machine
in polynomial time. Clearly NP contains the class P but whether this con-
tainment is strict is a central open problem in complexity theory. Although
widely believed that P 6= NP, the P vs NP conjecture has successfully re-
sisted attempts of resolution till date. This question gained importance
after the concept of NP-completeness was formalised due to the seminal
work of Cook [23] and Levin [45] which proved that checking satisfiability of
boolean formulae, SAT, is NP-complete. Subsequently Karp [31] showed a
number of combinatorial problems including clique problem and travelling
salesman problem to be NP-complete. A problem being NP-complete is a
strong evidence that it has no polynomial time algorithm. The class of NP-
complete problems is particularly important in view of the large number of
important problems that it contains. The book of Garey and Johnson [29]
gives a through review of NP-completeness and intractability with a list of
important NP-complete problems.

Are there problems that are of intermediate complexity in NP? Lad-
ner [34] showed that if P 6= NP then there are problems that are neither in
P nor are NP-complete. It is of interest to know whether there are natural
problems of this kind. Graph Isomorphism seems to be one such and is one
of the topics of this thesis.

Analogous to the arithmetic hierarchy in computability, Stockmeyer de-
fined the polynomial hierarchy [65]. However, unlike the arithmetic hier-
archy, it is not known whether the polynomial hierarchy is infinite. Many
interesting problems have been shown to be at different levels of the poly-
nomial hierarchy. Like the working assumption that P 6= NP, it is widely
believed that the polynomial time hierarchy is infinite.

Important subclasses of P are the complexity classes L and NL. The
class L consists of problems for which input instance of size n can be solved
with O(log n) space on a deterministic Turing machine. Recently, Rein-
gold [57] proved that L contains undirected s-t connectivity problem: given
an undirected graph and two nodes s and t check whether there is a path
from s to t. As a consequence many problems that involve connectivity in

1Quantum computing is a potential challenge to this hypothesis.

8



undirected graphs can be solved in logspace. We summarise these results
here for use in later chapters.

Lemma 2.1 (Reingold). Given a undirected graph, computing the connected
components, find a maximal spanning forest etc. can be solved in logspace.

The class NL is the nondeterministic version of L consisting of languages
that can be accepted by nondeterministic logspace bounded Turing ma-
chines. A complete problem for NL is the directed s-t connectivity problem:
given a directed graph and two distinguished points s and t check if there is
a path from s to t.

In order to capture complexity classes below P, we need to restrict the
oracle access mechanism for nondeterministic and randomised logspace ma-
chines. A widely accepted oracle access mechanism is the “Ruzzo-Simon-
Tompa” oracle access [58] mechanism in which the oracle machine is re-
stricted to write oracle queries deterministically. In this thesis we will follow
this mechanism when we deal with NL oracle machines.

Circuit depth and size gives an elegant way of capturing parallel com-
plexity of a problem. The class ACk consists of polynomial sized circuits
of depth O(logk n). If there is an additional constraint that each gate has
bounded fanin we get the class NCk. It is known that NCk ⊆ ACk ⊆ NCk+1.
The class NC is the union ∪∞k=1NCk and captures problems that have effi-
cient parallel algorithms: problems that can be solved in polylog time on a
parallel machine with the number of processors bounded by a polynomial in
the input size.

2.1 Counting complexity classes

Counting complexity classes are defined based on the number of accepting
and rejecting paths of a nondeterministic computation. Consider the func-
tional problem #SAT of counting the number of satisfying assignments of a
boolean formula. Functional problems like #SAT are problems in the com-
plexity class #P. The complexity class #P consists of all functions f from
strings to non-negative integers for which there is a NP machine Mf such
that f(x) is the number of accepting paths of Mf on input x. The functions
that are complete for #P are hard to compute functions as they directly
give a way of solving NP-complete problems. Surprisingly, certain decision
problems that have polynomial time algorithms have counting versions that
are #P-complete. A classic example is the problem of counting the number
of matchings of a bipartite graph. Counting the number of matching in a

9



bipartite graph is equivalent to computing the permanent of a (0, 1)-matrix
which was shown to be #P complete by Valiant [70].

The class #P is closed under sum and product However it is not closed
under subtraction. The closure of #P under subtraction is the class GapP.
Alternatively, GapP can be defined as the class of all functions f for which
there is a NP-machine Mf such that f(x) is the difference of the accepting
and rejecting paths of Mf on input x. Apart from being closed under sub-
traction GapP inherits all the nice closure properties of #P. We summarise
these closure properties below (see [26]).

Theorem 2.2. The class #P and GapP are closed under exponential sum-
mation and polynomial product, i.e. if f(x, y) be a function in #P (GapP )
then for any polynomial r(.) the functions

g(x) =
∑

|y|≤r(|x|)

f(x, y)

and
h(x) =

∏
y≤r(|x|)

f(x, y)

are in #P (GapP).

The functions in #P are hard to compute — Toda’s [67] results shows
that the entire polynomial hierarchy is contained in P#P. Nonetheless, cer-
tain #P functions can be efficiently approximated, for example #DNFSAT

has polynomial time approximation algorithms. For approximating general
#P function the best known result is due to Stockmeyer [64].

Theorem 2.3. For every function f in #P and any fixed constant c there
is a randomised polynomial time algorithm with NP-oracle that on input x
computes a value Nx ∈ N such that(

1− 1

|x|c
)
Nx ≤ f(x) ≤

(
1 +

1

|x|c
)
Nx

The class PP consists of all languages L for which there is a GapP
function f such that x ∈ L if and only if f(x) > 0. Surprisingly the entire
polynomial hierarchy is contained in PPP as shown by Toda [67]. The class
ModkP consists of all languages L for which there is a #P function f such
that x ∈ L if and only if f(x) is not divisible by k. By ⊕P we mean the
class Mod2P.

10



UP and SPP

A language L is in UP if there is a #P function f such that x is in L if
f(x) = 1 and x is not in L if f(x) = 0. The class UP was introduced
by Valiant [69] to captures the complexity of one-way functions. One-way
functions are functions that are easy to compute but hard to invert and
their study is central to cryptography. The existence of one-way functions
is equivalent to the complexity theoretic assumption that UP 6= P. The
class SPP is the UP analogue of GapP. A language L is in SPP if there is a
function f in GapP such that for all strings x, x ∈ L if f(x) = 1 and x 6∈ L
if f(x) = 0.

The class SPP is probably one of the most natural counting complex-
ity class. An important property of SPP is that it is exactly the class of
languages that are low for GapP. A language L is said to be low for a
complexity class C if CL = C. Schöning [59] introduced the concept of low-
ness as a tool for classifying complexity theoretic problems and showed that
NP ∩ co-AM is low for Σp

2.
Due to the lowness of SPP for GapP, languages in SPP are in and low for

all reasonable gap-definable complexity classes including itself [26]. Many
interesting counting complexity classes like ⊕P, ModkP, PP,C=P are gap
definable and hence showing a language L to be in SPP in one stroke shows
that it is in and low for each of these classes. Since SPP is low for itself,
the class FPSPP also share these interesting lowness properties. The class
FPSPP is essentially SPP as the bits of functions of FPSPP can be computed
in SPP. Computational problems that are NP-hard are not expected to
share these lowness properties and hence languages in SPP (or functional
problems in FPSPP) are unlikely to be NP-hard. In Chapter 4 we show that
the Graph Isomorphism problem is in SPP.

We now describe an important technique that is used to give SPP-upper
bounds. Let A be a language in NP. An polynomial time oracle machine MA

is said to make UP-like queries to A if there is an NP machine N accepting
A such that for all inputs x and for all queries y made by M on input x, N
has at most one accepting computation on y, i.e. for queries made by M the
machine N behaves like a UP machine. Again due to the closure properties
of GapP and the lowness properties of SPP we have the following important
theorem [32].

Theorem 2.4. Any language accepted by (function computed by) a polyno-
mial time oracle machine MA making UP-like queries to A ∈ NP is in SPP
(FPSPP).

11



Logspace Counting classes

Analogous to GapP and #P by considering NL machines we can define
classes GapL and #L. The class #L consists of functions f for which there
is an NL machine Mf such that f(x) is the number of accepting paths of
Mf on x. Similarly we say that a function f(x) is in #LA for some language
A if there is an oracle NLA machine MA

f such that f(x) is the number of

accepting paths of MA
f on x. Recall that the oracle machine MA

f follows the
Ruzzo-Simon-Tompa access mechanism for making queries to A.

Logspace counting classes have played an important role in classifying
natural problems in NC2. For example it follows from the work of Toda [66]
and Vinay [72] that the problem of computing the determinant of an integer
matrix is complete for GapL (for a detailed study see the article of Mahajan
and Vinay [51]). Also the complexity of perfect matching is now quite well
characterised by Allender et al [5] using logspace counting classes and the
isolation lemma.

The complexity class ModkL is the logspace analogue of ModkP. The
class ModkL consists of languages L for which there is a function f in #L
such that x is in L if and only if f(x) 6= 0 (mod k). It is known that if k1 | k2

then we have Modk1L ⊆ Modk2L. For a prime p the complexity class ModpL
captures the complexity of determinant over Fp quite accurately (cf. [20]).
Recently, Allender et al [4] showed that many important linear algebraic
problems like finding the rank and checking feasibility of linear equations
over Fp are intimately connected to the complexity class ModpL. A survey
of important results in this area is given in the article of Allender [3]. We
summarise these results in the following theorem.

Theorem 2.5 (Buntrock et al). Let p be a prime. Given a m × n matrix
A and a m× 1 column vector b over Fp the problem of testing whether the
system of linear equations Ax = b is feasible is in ModpL. In case the system
is feasible finding a nontrivial solution for the vector x of indeterminates is
in FLModpL.

We now define the ModkL hierarchy. The first level of the ModkL-
hierarchy is the class ModkL. A language L is said to be in the l+ 1th level
of the ModkL-hierarchy if there is a function f in #LA, A a language in the
lth level of the ModkL-hierarchy, such that for all x, x is in L if and only if
f(x) 6= 0 (mod k).

The ModkL hierarchy can also be seen as languages accepted by con-
stant depth circuits with ModkL oracle, i.e. the ModkL hierarchy is exactly
AC0(ModkL). It is not known whether the ModkL-hierarchy is infinite.

12



However for primes p the ModpL-hierarchy collapses to ModpL. In Chap-
ter 5 we see the connections of BCGI with the ModkL-hierarchy.

13



Chapter 3

Group Theory

In this chapter we review the group theory in particular the theory of per-
mutation groups required for this thesis. The groups we encounter here
will all be finite. For a detailed presentation any standard text book on
group theory (for example [30]) may be consulted. We follow the notation
of Wielandt [74] for permutation groups.

We use the following notation: For groups G and H, H ≤ G means that
H is a subgroup of G. By H < G we mean that H is a strict subgroup of
G i.e. H ≤ G and H 6= G. By G ≥ H and G > H we mean H ≤ G and
H < G respectively. Similarly by H EG we mean H is a normal subgroup
of G. When H is a strictly smaller normal subgroup we denote it by HCG.
As before we use GDH and GBH to mean H EG and H CG respectively.
Let G be a group and A be any subset of G. By the normal closure of A
in G, denoted by NCLG(A), we mean the smallest normal subgroup of G
containing A. The centraliser CG(A) is the subgroup of G that commutes
with all the elements of A.

Let H be any subgroup of G. By the index of H in G, denoted by [G : H],
we mean the number of distinct H cosets in G. We have [G : H] = #G

#H .
We say that H embeds into a group G, denoted by H ↪→ G if there is a
one-to-one homomorphism from H to G. In other words H is isomorphic to
a subgroup of G.

Consider a normal subgroup N of G. There is a canonical homomor-
phism from G to G/N that maps an element g in G to its coset Ng. The
canonical homomorphism gives a one-to-one correspondences between sub-
groups of G/N and subgroups of G containing N . For a subgroup L of G/N ,
by the pullback of L in G we mean the unique subgroup of G that contains
N under this correspondence. More generally suppose ψ is a homomor-

14



phism from G onto H then there is a one-to-one correspondence between
subgroups of G containing ker (ψ) and subgroups of H given by L 7→ ψ(L).
The pullback of a subgroup H ′ of H is the unique G′ such that ψ(G′) = H ′.

Let K and H be subgroups of G then the set KH is also a subgroup if
and only if KH = HK and has order given by #KH = 1

#K∩H .#K.#H. If
in addition H is a normal subgroup of KH and K ∩H is trivial we say that
KH is the semidirect product of K and H which we denote by K nH. The
semidirect product K nH is the direct product (or just product) K ×H if
both K and H are normal subgroup of KH.

Let G be any group. For a subgroup H, a series of groups G = G0 >
. . . > Gt = H is called a tower of groups between G and H. The subgroup
H is subnormal if there exists a subnormal tower of groups between G and
H, i.e. a tower of groups G = G0B . . .BGt = H such that for all 0 ≤ i < t,
Gi+1 is a normal subgroup of Gi. For any group G the trivial group {1} is
subnormal and any subnormal tower of groups between G and {1} is called
a subnormal series for G. A composition series for G is a subnormal series
G = G0B . . .BGt = {1} such that each of the quotients Gi/Gi+1 are simple.

Definition 3.1 (Solvable groups). A group G is said to be solvable if there
is a subnormal series G = G0 B . . . B Gt = {1} such that for all 0 ≤ i < t
the quotient Gi/Gi+1 is abelian.

We now define the class Γd of groups. The class Γd is a generalisation
of the class of solvable groups; if G is solvable then G is in Γd for any d.
Computational problems for groups in Γd occur in many permutation group
theoretic algorithms for example in Luks’ polynomial time algorithm for
bounded degree graphs [46].

Definition 3.2. A group G is said to be in Γd if there is a subnormal series
G = G0B . . .BGt = {1} such that for all 0 ≤ i < t either Gi/Gi+1 is abelian
or is isomorphic to a subgroup of Sd, the group of permutations on d objects.

For d < 5, since Sd is solvable, Γd is just the class of solvable groups.
The Γd-testing, which we will describe in Chapter 7, will use the following
closure properties of the class Γd.

Proposition 3.3. Any subgroup of a group in Γd is also in Γd. For any
group G and a normal subgroup H, G is in Γd if and only if the groups G/H
and H are in Γd.

An important subclass of the class of solvable group is the class of nilpo-
tent groups which we define below.

15



Definition 3.4 (Nilpotent groups). A group G is said to be nilpotent if all
its Sylow subgroups are normal.

The following lemma gives alternate characterisation of nilpotent groups
(see Section 10.3 of Hall’s book [30]).

Lemma 3.5. Let G be a finite group then the following are equivalent.

1. G is nilpotent.

2. G is the product of all its Sylow subgroups.

3. For every prime p that divides the order of G there is a unique p-Sylow
subgroup.

Let G be a group and HEG be a normal subgroup of G. A normal tower
between G and H is a subnormal series G = G0 B . . . B Gt = H such that
each Gi is normal in G. A normal series for G is a normal tower between
G and the trivial normal subgroup {1}.

Let G1 and G2 be two isomorphic groups and let φ : G1 → G2 be
an isomorphism. The diagonal subgroup with respect to φ, denoted by
Diagφ (G1 ×G2), is the subgroup {〈g, φ(g)〉 : g ∈ G1} of G1 × G2. Even
though the diagonal group Diagφ (G1 ×G2) depends on the isomorphism φ,
it is isomorphic to G1 (and G2) and hence we will usually drop the isomor-
phism φ.

A group G is said to be simple if the only proper normal subgroup of
G is the trivial group. Let T be a simple group. A group G is said to be
T -semisimple if there is a positive integer k such that G is isomorphic to
T k. An important property of non-abelian semisimple group which we will
use in many occasions is Scott’s lemma [60] (see Luks’ course notes for a
proof[48, page 38]).

Lemma 3.6 (Scott’s Lemma). Let T1, . . . , Tk be nonabelian finite simple
groups. Let G be any subgroup of

∏r
i=1 Ti that projects onto each Ti. Then G

is a direct product of diagonal subgroups. More precisely, there is a partition
∪sj=1Is of {1, . . . , r} such that

G =

s∏
j=1

Diag

∏
i∈Ij

Ti

.
The Scott’s lemma is valid only for nonabelian simple groups. We give

a counter example to illustrate this. Consider the vector space F3
2. Let W

16



be the subspace {(x1, x2, x3)T|x1 +x2 +x3 = 0}. The space W project onto
each of the component F2 however it is easy to see that W is not a product
of diagonal subgroups.

3.1 Permutation Groups

Let Ω be a finite set. The symmetric group Sym (Ω) is the group of all
permutations on Ω. By a permutation group on Ω we mean a subgroup
of Sym (Ω). By Sn we mean Sym ({1, . . . , n}). For a group G the action
g : a 7→ ag makes G a permutation group on itself. This action is called the
right regular action. Similarly the left regular action is the action g : a 7→ ga.

While dealing with permutation groups over Ω we adopt the following
convention: Lower case Greek letters will be used to denote elements of Ω
where as upper case Greek letters will be used to denote subsets of Ω. Lower
case Latin letters will be used to denote elements of Sym (Ω) and upper case
Latin letters will be used to denote subsets or subgroups of Sym (Ω).

The image of α ∈ Ω under the permutation g ∈ Sym (Ω) will be denoted
by αg. The advantage of this notation is that group action behave similar
to exponentiation, i.e. (αg)h = αgh. For A ⊆ Sym (Ω), αA denotes the set
{αg : g ∈ A}. In particular, for G ≤ Sym (Ω) the G-orbit containing α is
αG. The G-orbits form a partition of Ω. Given a generating set of G, a
straight forward transitive closure algorithm can be used to compute all the
orbits (cf. [49]).

Theorem 3.7. Given G ≤ Sym (Ω) by a generating set A and α ∈ Ω, there
is a polynomial-time algorithm to compute αG. Moreover for each β ∈ αG
the above mentioned algorithm can compute a gβ ∈ G such that αgβ = β.

Let G be a permutation group action on Ω. For ∆ ⊆ Ω and g ∈ Sym (Ω),
∆g denotes {αg : α ∈ ∆}. The set-wise stabiliser of ∆, i.e. {g ∈ G : ∆g =
∆}, is denoted by G∆. If ∆ is the singleton set {α} we write Gα instead of
G{α}. For any ∆ by G|∆ we mean G∆ restricted to ∆. For a set ∆ ⊆ Ω the
pointwise stabiliser will be denoted by G (∆). Notice that G (Ω) = {1} and
G ({α}) = Gα.

An often used result is the orbit-stabiliser formula stated below [74,
Theorem 3.2].

Theorem 3.8 (Orbit-Stabiliser formula). Let G be a permutation group on
Sym (Ω) and let α be any element of Ω then the order of the group G is given
by #G = #Gα.#α

G.

17



3.2 Strong generator set

Let G be a group and H be a subgroup of G. By a right traversal of
H in G we mean a collection of coset representatives one from each right
coset of H in G. Similarly we can define the left traversal of H in G. Let
G = G0 ≥ . . . ≥ Gt = {1} be a decreasing tower of subgroups of G. Let
Ci denote the right traversal of Gi in Gi−1 then the collection ∪ti=1Ci is a
generator set of G which we call a strong generator set of G with respect
to the given tower. The strong generator set depends on the choice of the
traversals Ci at each stage. Also #Ci = [Gi : Gi−1] and hence the order of
G is given by

∏t
i=1 #Ci.

We now describe a particularly useful strong generating set for permu-
tation groups of degree n. Let G be a permutation group over Ω, a set
of cardinality n. Without loss of generality we assume that Ω is the set
{1, . . . , n}. Let G(i) be the point-wise stabiliser of {1, . . . , i}. The tower of
groups G = G(0) ≥ . . . ≥ G(n−1) = {1} gives rise to a strong generator set
called the Schreier-Sims strong generating set. For any permutation group
G ≤ Sn note that #Ci ≤ n− i and hence the Schreier-Sims strong generator
set is a succinct presentation of G. There are polynomial time algorithm
for computing the Schreier-Sims strong generator set [62, 63, 28]. Many
algorithmic tasks involving permutation groups can be solved once a strong
generator set is computed. We collect some of the useful computational
results in the following theorem.

Theorem 3.9. Let G a permutation group on Ω presented by giving a gen-
erator set of G. The following tasks can be done in polynomial time.

1. Computing the Schreier-Sims strong generator set.

2. Computing the order of G.

3. Given g ∈ Sym (Ω) checking whether g ∈ G.

4. Given a subset ∆ of Ω compute the pointwise stabiliser G (∆).

A detailed treatment of computational issues in permutation groups is
available in the book by Seress [2].

3.3 Transitivity, Blocks and Primitivity

A permutation group G on Ω is transitive if there is only one G-orbit. Sup-
pose G ≤ Sym (Ω) is transitive. Then ∆ ⊆ Ω is a G-block if for all g ∈ G

18



either ∆g = ∆ or ∆g ∩∆ = ∅. For every G, Ω is a block and each singleton
{α} is a block. These are the trivial blocks of G. A transitive group G is
primitive if it has only trivial blocks and it is imprimitive if it has nontrivial
blocks. Examples for primitive groups are Sn and An. These are the “gi-
ants”. However the following bound on primitive groups in Γd shows that
they are small [11].

Theorem 3.10 (Babai, Cameron, Pálfy). Let G ≤ Sn be a primitive per-
mutation group in Γd. Then #G ≤ nO(d).

The above mentioned bound is a generalisation of Pálfy’s bound [56]
on the order of primitive solvable subgroups of Sn that was used in the
Landau-Miller solvability test [39]. Bounds on sizes of primitive groups such
as Theorem 3.10 are important in runtime analysis of various permutation
group theory problems. In particular our Γd-testing algorithm depends on
Theorem 3.10.

A G-block ∆ is a maximal subblock of a G-block Σ if ∆ ⊂ Σ and there
is no G-block Υ such that ∆ ⊂ Υ ⊂ Ω. Let ∆ and Σ be two G-blocks. A
chain ∆ = ∆0 ⊂ . . . ⊂ ∆t = Σ is a maximal increasing chain of G-blocks
between ∆ and Σ if for all i, ∆i is a maximal subblock of ∆i+1.

If ∆ is a G-block then ∆g is also a G-block, for each g ∈ G. Two G-
blocks ∆1 and ∆2 are conjugates (more precisely G-conjugates) if there is
a g ∈ G such that ∆g

1 = ∆2. It is not difficult to see that the conjugate
relation on the set of G-blocks forms a equivalence relation. Let ∆ and Σ be
two G-blocks such that ∆ ⊆ Σ. The ∆-block system of Σ, is the collection

B (Σ/∆) = {∆g : g ∈ G and ∆g ⊆ Σ}.

The ∆-block system of Σ gives a partition of Σ. It follows that #∆
divides #Σ and by index of ∆ in Σ, which we denote by [Σ : ∆], we mean
#B (Σ/∆) = #Σ

#∆ . We will use B (∆) to denote B (Ω/∆).
Blocks are fundamental structures associated with permutation groups

and have intimate connections with subgroups of G. To illustrate this con-
sider a finite group G as a permutation group on itself under the right regular
action. A subset H of G is a subgroup if and only if H is a G-block contain-
ing the identity. For a subgroup H of G, which is a G-block under the right
regular action, any other conjugate block of H is a right coset of H. More
generally if G is a transitive permutation group on Ω, we have the following
Galois correspondence between blocks and subgroups [74, Theorem 7.5].

19



Theorem 3.11 (Galois correspondence of blocks). Let G ≤ Sym (Ω) be
transitive and α ∈ Ω. There is a one-to-one correspondence between G-
blocks containing α and subgroups of G containing Gα given by ∆ 
 G∆.
Also for blocks ∆ ⊆ Σ we have [GΣ : G∆] = [Σ : ∆].

In particular the above theorem implies that G is primitive if and only
if for all α ∈ Ω, Gα is a maximal proper subgroup of G.

Let G ≤ Sym (Ω) be transitive and ∆ and Σ be two G-blocks such that
∆ ⊆ Σ. Let G (Σ/∆) denote the group {g ∈ G : Υg = Υ for all Υ ∈
B (Σ/∆)}. We write G∆ for the group G (Ω/∆). For any g ∈ GΣ, since g
setwise stabilises Σ, g permutes the elements of B (Σ/∆). Hence for any Υ ∈
B (Σ/∆) we have Υg−1G(Σ/∆)g = Υ. Thus, G (Σ/∆) is a normal subgroup
of GΣ. In particular, G∆ is a normal subgroup of G. The following lemma
lists important properties of G (Σ/∆).

Theorem 3.12.

1. For G-blocks ∆ ⊆ Σ, G (Σ/∆) is the largest normal subgroup of GΣ

contained in G∆.

2. Let Σ be G-block then GΣ ↪→
∏

Υ∈B(Σ) G|Υ.

3. Let ∆ be a G-subblock of Σ then GΣ
G(Σ/∆) is a faithful permutation group

on B (Σ/∆) and is primitive if and only if ∆ is a maximal subblock.

4. The quotient group GΣ/G∆ can be embedded into the product group(
GΣ

G(Σ/∆)

)l
for some l.

Proof. Let N be any normal subgroup of GΣ contained in G∆. We have
for ∆N = ∆. Consider any Υ ∈ B (Σ/∆). Since GΣ acts transitively on
B (Σ/∆) there is a g ∈ GΣ such that Υ = ∆g. Since gN = Ng we have
ΥN = ∆gN = ∆Ng = Υ. This proves that for all Υ ∈ B (Σ/∆), ΥN = Υ.
Hence N is contained in G (Σ/∆). This proves part 1.

The group GΣ consists of all elements g of G that fixes setwise every
block Υ ∈ B (Σ) and hence we have the embedding of part 2.

That GΣ
G(Σ/∆) acts faithfully on B (Σ/∆) follows from the fact that for

any two g and h in GΣ, g and h has the same action on B (Σ/∆) if and
only if gG (Σ/∆) and hG (Σ/∆) are equal. Any nontrivial GΣ

G(Σ/∆) -block of

B (Σ/∆) gives a nontrivial G-block between ∆ and Σ and vice versa. Thus,
GΣ

G(Σ/∆) is primitive if and only if ∆ is a maximal subblock of Σ.

20



Finally for the last statement notice that we have the group isomorphism

G|Υ
G (Υ/∆Υ)|Υ

∼=
GΥ

G (Υ/∆Υ)
.

Also since G∆ = GΣ ∩
∏
G (Υ/∆Υ)|Υ where Υ varies over B (Σ) and ∆Υ is

any conjugate of ∆ contained in Υ we have

GΣ/G∆ ↪→
∏

Υ∈B(Σ)

G|Υ
G (Υ/∆Υ)|Υ

=
∏

Υ∈B(Σ)

GΥ

G (Υ/∆Υ)
.

Let g ∈ G be any element that maps ∆ to ∆Υ then it follows that
GΥ = g−1GΣg and G (Υ/∆Υ) = g−1G (Σ/∆)g. Hence the quotient groups
GΣ

G(Σ/∆) and GΥ
G(Υ/∆Υ) are isomorphic. Thus, we see that GΣ/G∆ is isomorphic

to a subgroup of
(

GΣ
G(Σ/∆)

)l
for some l.

Lemma 3.13. Let G ≤ Sym (Ω) be transitive and N be a normal subgroup
of G. Let α ∈ Ω. Then the N -orbit αN is a G-block and the collection
of N -orbits is an αN -block system of Ω under G action. If N 6= {1} then
#αN > 1. Furthermore, if Gα ≤ N 6= G then the αN -block system is
nontrivial implying that G is not primitive.

Proof. Let α ∈ Ω and g ∈ G. Then (αN )g = αNg = αgN = (αg)N . Thus
(αg)N and αN are identical if αg ∈ αN and disjoint otherwise, since they are
distinct N -orbits. Hence αN is a G-block and the orbits of N is an αN -block
system of Ω under G action. If αN = {α} then for all β ∈ Ω, βN = {β}.
Thus, N = {1}.

Finally, note that by the Orbit-Stabiliser formula #G = #Ω ·#Gα and
#N = #αN · #Gα. Thus, if {1} 6= N 6= G then αN is a proper G-block.
This completes the proof.

3.4 Structure Tree and Structure Forest

An important structure associated with a transitive permutation group is
its structure tree. Structure trees have proved useful in analysing various
divide and conquer algorithms for permutation groups (see, e.g. [49]). Let
G transitive permutation group acting on Ω. Consider a maximal chain of
G-blocks {α} = ∆0 ⊂ . . . ⊂ ∆t = Ω. For each such maximal chain we can
associate a structure tree as follows:

21



Definition 3.14 (Structure Tree). Let G be a transitive permutation group
acting on Ω and let Ω = ∆0 ⊃ . . . ⊃ ∆t = {α} be any maximal decreasing
chain of G-blocks. A structure tree of G with respect to this maximal chain
is a labelled rooted tree of depth t satisfying the following conditions.

1. The root is labelled Ω.

2. The leaves are labelled with singleton sets {γ}, γ ∈ Ω.

3. For each node labelled Σ at level i the children of Σ are {∆ ∈ B (∆i+1) :
∆ ⊂ Σ}.

We will identify the nodes of the tree with its labels (which are G-blocks).
Any root-to-leaf path Ω = ∆0 ⊃ . . . ⊃ ∆t = {α} in a structure tree is a
maximal decreasing chain of G-blocks. Conversely any maximal decreasing
chain Ω = ∆0 ⊃ . . . ⊃ ∆t = {α} of G-blocks gives a structure tree for which
it is a root-to-leaf path. If two maximal chains Ω = ∆0 ⊃ . . . ⊃ ∆t = {α}
and Ω = Σ0 ⊃ . . . ⊃ Σs = {β} gives the same structure tree then t = s
and there is a permutation g ∈ G such that ∆g

i = Σi for each i (pick any g
that maps α to β). For two nodes ∆ and Σ of a structure tree T , Σ is an
ancestor of ∆ if and only if ∆ ⊆ Σ.

Let G be a transitive permutation group on Ω and let T be any structure
tree of G. There is a natural action of G on the nodes of T ; a node ∆ under
the action of g ∈ G goes to the node ∆g. This action embeds G into
the group of automorphisms of the labelled graph T . For any node Σ the
subgroup of G that fixes Σ is the group GΣ and for any child ∆ of Σ the
group G (Σ/∆) is the subgroup of G that fixes all the siblings of ∆. It follows
from Theorem 3.12 that G acts primitively on the children of the root of T .

For intransitive groups G on Ω instead of a structure tree we have a
structure forest . Let Ω1, . . . ,Ωk be the distinct G-orbits then G restricted
to Ωi is transitive on Ωi. A structure forest of G is the collection of structure
trees {T1, . . . , Tk} where Ti is a structure tree of transitive group G|Ωi on
Ωi. Many permutation group algorithm uses a divide and conquer strategy
by first computing the orbits and then finding the maximal blocks. The
structure forest thus appear naturally in the analysis of such algorithms.

Given a permutation group G acting on Ω there is a polynomial time
algorithm to compute a structure tree for G. A key step involved is to
compute a minimal G-block. The polynomial time algorithm for finding the
minimal G-block follows from the fact that the smallest block that contains
α and β is exactly the connected component of α in the undirected graph
X where the vertex set is Ω and the edge set is {{α, β}g : g ∈ G}. The

22



graph X can be constructed in polynomial time as it amounts to finding the
orbit of {α, β} under the action of G on the set of unordered pairs of Ω. To
summarise the above discussion we have the following lemma [46, Lemma
1.3]

Lemma 3.15. Given a permutation group G on Ω via a generating set A
and a G-orbit Ω′ there is a polynomial time algorithm for computing the
G-block system of Ω′ corresponding to a minimal G-block.

23



Chapter 4

The Graph Isomorphism
problem

In this chapter we study the Graph Isomorphism problem (GI for short).
A graph X for us is an undirected graph i.e. a finite set of vertices V (X)
and a set E(X) of unordered pairs of elements of V (X). Two graphs X1

and X2 are isomorphic if there is a one-to-one map f from V (X1) onto
V (X2) that preserves the edge relations i.e. for every unordered pair {u, v},
u, v ∈ V (X1), {u, v} ∈ E(X1) if and only if {f(u), f(v)} ∈ E(X2). The
function f we will call an isomorphism between X1 and X2.

Definition 4.1 (Graph Isomorphism problem). Given two graphs X1 and
X2 test whether they are isomorphic.

The Graph Isomorphism problem is believed to be one of the natural
problems that lie between the complexity classes P and NP. Even though
no polynomial time algorithm is know, it is not expected to be NP-complete.
In fact, under reasonable complexity theoretic assumptions, it appears that
the graph isomorphism problem is unlikely to be NP-complete. It was shown
by Boppana et al [19] that Graph Isomorphism is not NP-complete unless
the polynomial hierarchy collapses to Σp

2. They also showed that graph
non-isomorphism is in AM and hence GI is in NP ∩ co-AM. Schöning [59]
generalised the result of Boppana et al [19] and proved that NP ∩ co-AM
is low for Σp

2. It then follows that any language in NP ∩ co-AM cannot be
NP-complete unless the polynomial hierarchy collapses to Σp

2. Lowness for
PP is another property that NP-complete problems are unlikely to have. It
was shown by Köbler et al [32] that GI is in LWPP and hence is low for the
class PP. For a detailed study of the Graph Isomorphism problem from a
complexity theoretic perspective see the book of Köbler et al [33].

24



The main result of this chapter is the SPP upper bound for Graph Iso-
morphism [6]. Our result is an improvement on the LWPP upper bound of
Köbler et al [32]. As mentioned in Chapter 2 a problem in SPP (or FPSPP)
is low for many interesting complexity classes like ⊕P for example. Hence
our result shows that GI is low for each of these complexity classes. Earlier
it was not even known whether GI is in ⊕P.

To prove the SPP upper bound for GI it is sufficient to give an FPSPP

algorithm for AUT. In fact in Section 4.4 we show that a generic permutation
group theoretic problem which we will call FINDGROUP problem, has a
FPSPP algorithm. Many interesting permutation group problems including
AUT will be special cases of this generic problem.

4.1 Group theoretic formulation of Graph Isomor-
phism problem

We now formulate the Graph Isomorphism problem as a group theory prob-
lem. Many important upper bounds for GI were achieved by making use
of this group theoretic formulation. The polynomial time algorithm for
bounded valance graphs [46] and the fastest known algorithm for general
graphs [75, 12] are group theoretic in nature.

Consider the family of n-vertex graph. With out loss of generality we
fix their vertex set to be an n element set Ω, say {1, . . . , n} for example.
Let G(Ω) be the set of graphs with vertex set Ω. The permutations g ∈
Sym (Ω) has a natural induced action on the set of unordered pairs

(
Ω
2

)
namely {u, v}g = {ug, vg}. This natural action induced action on G(Ω); a
permutation g ∈ Sym (Ω) maps the graph X = (Ω, E) to Xg = (Ω, Eg).
The Graph Isomorphism problem can be formulated as follows: Given two
graphs X1 and X2 in G(Ω) check whether they are in the same orbit under
the Sym (Ω) action.

An automorphism of a graph X in G(Ω) is an element of Sym (Ω) such
that Xg = X. The set of all automorphisms of a graph X, which we will
denote by Aut (X), is but the stabiliser subgroup of the point X under
Sym (Ω) action. We now define the Graph Automorphism problem, AUT

for short, which is closely related to GI.

Definition 4.2 (Graph Automorphism problem). Given an undirected graph
X compute a generator set of Aut (X) as a permutation group on V (X).

By #GI we mean the counting problem where given two graphs X1 and
X2 we want to compute the number of isomorphisms between X1 and X2.

25



Similarly by #AUT we mean the counting version of AUT, i.e. given a graph
X counting the number of automorphisms of X.

The problem #AUT is polynomial time Turing reducible to AUT as there
are polynomial time algorithm for computing the order of a permutation
group given by a generating set. Let X1 and X2 be isomorphic graphs
in G(Ω). Let g ∈ Sym (Ω) be any isomorphism between X1 and X2 then
the set of all isomorphism between X1 and X2 is the coset Aut (X1)g and
hence #Iso(X1, X2) = #Aut (X1) = #Aut (X2). Mathon [52] proved that
the Graph Isomorphism problem and Graph Automorphism problem are
equivalent under polynomial time Turing reductions. As a result we have
the following theorem.

Theorem 4.3 (Mathon). The computational problems GI, AUT, #GI and
#AUT are all equivalent under polynomial-time Turing reductions.

Mathon’s result together with Toda’s [67] theorem gives another reason
to believe that GI is unlikely to be NP-complete. By Toda’s theorem P#P

contains the entire polynomial hierarchy. Therefore the counting problem
#GI is not #P-complete unless the polynomial hierarchy collapses to ∆p

2.
Counting versions of almost all known NP-complete problems are complete
for #P. In fact counting versions of certain problems in P, like perfect
matching, are also complete for #P.

4.2 Problems related to Graph Isomorphism

We look at problems that are closely related to GI. Many isomorphism
problems of combinatorial structures are closely connected to the Graph
Isomorphism problem. For a detailed account of these problems, their com-
plexity and their relation to GI see the book of Köbler et al [33, Chapter
1].

First we consider slight variations of the Graph Isomorphism problem.
A directed graph consists of a finite set of vertices V and a collection E ⊆
V × V . Isomorphisms of directed graphs should also preserve the direction
of edges, i.e. a bijection f from V (X1) to V (X2) is an isomorphism if
for all u and v in V (X1) the ordered pair (u, v) ∈ E(X1) if and only if
(f(u), f(v)) ∈ E(X2). The problem of directed Graph Isomorphism is to
check whether two directed graphs X1 and X2 are isomorphic. A vertex
coloured graph is a graph together with a colouring function, i.e. a map
ψ : V → C where C is the set of colours. For coloured graphs X1 and
X2 a map f : V (X1) → V (X2) is an isomorphism if f should preserve the

26



edge relations and also the colours, i.e. for any u ∈ V (X1) both u and f(u)
should of the same colour. The problem of coloured Graph Isomorphism is
to check whether two coloured graphs are isomorphic.

By attaching suitable graph gadgets one can show that each of these
problems are polynomial time equivalent to GI (see [53]).

We now consider the Group Isomorphism problem. We are given a group
G via its multiplication table, i.e. a two dimensional array indexed by
elements of the group G where for each g and h in G the (g, h)th entry is gh.
The Group Isomorphism problem, GrpI for short, is to check whether two
groups presented via their multiplication table is isomorphic. It turns out
that GrpI ≤pm GI (see [53]) however a reduction in the other direction is not
known. If instead of groups we consider semigroup Isomorphism, SemiGrpI
we have and equivalence result, i.e. SemiGrpI ≡pm Gi [18]. We now define
the Setwise stabiliser problem SetStab.

Definition 4.4 (Setwise Stabiliser Problem). Given a generator set for a
permutation group G over Ω and a subset ∆ ⊆ Ω compute a generator set
for G∆ the set-wise stabiliser of ∆.

There is a polynomial time many one reduction from AUT to SetStab.
To see this consider a graph X = (V,E) consider the action of G = Sym (V )
on the set Ω =

(
V
2

)
of unordered pairs of V . Then Aut (X) is nothing but

GE (or GΩ\E). However no reduction is known in the other direction. The
Setwise stabiliser problem seems to be harder than the Graph Isomorphism
problem.

We now define the hidden subgroup problem, Hsp for short. Many in-
teresting computational problems for which there are efficient quantum al-
gorithms are variants of the Hsp. This include the Shor’s polynomial time
algorithm for integer factoring and discrete logarithm [61]. Many other
group theoretic problems including AUT can be cast as a Hidden subgroup
problem.

For a group G and a set X, φ : G → X is a right hiding function for a
subgroup H of G if φ is constant and distinct on the right cosets of H, i.e.
for any g1 and g2 in G, φ(g1) = φ(g2) if and only if Hg1 = Hg2.

Definition 4.5 (Hidden Subgroup Problem). Given a group G by its gen-
erator set and a hiding function φ : G → X for a subgroup H compute a
generator set for H.

27



4.3 Computing the lex-least element of a Coset

Consider a finite totally-ordered set (Ω, <). The order < on Ω induces a
natural order, the lexicographic order, on Sym (Ω) as follows: g < h if there
is an α ∈ Ω such that αg < αh and for all β < α, βg = βh. It is not difficult
to see that < is a total order on Sym (Ω) and the least element is 1. In
this section we give a polynomial time algorithm that computes the least
element of Gg given g and a generating set for G. This algorithm plays a
crucial role in our SPP algorithm for FINDGROUP.

Theorem 4.6. Given a permutation group G on a totally ordered set (Ω, <)
via a generator set. Let g ∈ Sym (Ω) be any permutation of Ω. There is a
polynomial-time algorithm that computes the lexicographically least element
of Gg.

Proof. Let g∗ be the lex-least element of Gg. Let α be the least element
of Ω. We first compute the set αGg in polynomial time — First compute
the G-orbit Σ = αG using Theorem 3.7 and then compute Σg. Furthermore
we assume that we have actually computed for each η ∈ αGg an element
gη ∈ Gg such that αgη = η. Let β be the least element of αGg then we have
αg
∗

= β. Otherwise αgβ = β < αg
∗

and hence gβ ∈ Gg is lesser that g∗ in
the lexicographic order which is a contradiction.

Every element of the coset Gαgβ ⊆ Gg maps α to β. Conversely consider
any h ∈ Gg that maps α to β. The elements hg−1

β fixes α and hence
h ∈ Gαgβ. Therefore Gαgβ is exactly the set of elements that map α to β
and hence contains g∗. We can use the above idea repeatedly as follows: Let
G(i) be the subgroup of G that fixes pointwise the first i elements α1, . . . , αi
of Ω. By Theorem 3.9 we can compute the strong generator set of G and
hence compute the generator sets of each of the groups G(i) in polynomial
time. Starting with g0 = g, for 1 ≤ i < n we compute an element gi ∈ Gg
such that g∗ ∈ G(i)gi. In the ith step we compute the least element βi in the

set α
G(i−1)gi−1

i and a permutation h that maps αi to βi. The permutation gi
is h. Since G(n−1) = {1}, where n = #Ω, we have gn−1 = g∗. Algorithm 1
is the detailed presentation of the above discussion.

28



Input: An ordered set Ω, a generator set for G ≤ Sym (Ω), and a
g ∈ Sym (Ω)

Output: Lexicographically least element in Gg
Let α1 < . . . < αn be the ordered list of element of Ω.
Let G(i) be the pointwise stabiliser of {α1, . . . , αi}.
g0 = g
for i = 0 to n− 1 do

Find the element γ in αG
(i)

i and h ∈ G(i) such that αhi = γ and
β = γgi is minimum (Use Theorem 3.7);
gi+1 = hgi

end
return gn

Algorithm 1: Lexicographically least in a Right Coset

We can easily extend the above result to show the following.

Theorem 4.7. For an ordered set Ω there is a polynomial time algorithm
that on input a generator set for permutation group G on Ω and g1, g2 ∈
Sym (Ω), computes the lexicographically least element of g1Gg2. In particular
there is a polynomial time algorithm to compute the lex-least element for a
left coset gG.

Proof. Since g1Gg2 = g1Gg
−1
1 g1g2 and the lex-least element of g1Gg2 is equal

to the lex least element of Hg′ where H = g1Gg
−1
1 and g′ = g1g2. If A is a

generator set of G then g1Ag
−1
1 = {g1hg

−1
1 : h ∈ A} is a generator set for

H. The result then follows from Theorem 4.6.

4.4 The FINDGROUP problem

In this section we study the generic group theoretic problem FINDGROUP.
We give an FPSPP upper bound for FINDGROUP. Many permutation group
theoretic problems AUT, Hsp and SetStab special cases of FINDGROUP.
Hence giving an FPSPP bound for FINDGROUP in one stroke gives SPP (or
FPSPP) upper bounds for each of these problems.

We define a generic permutation group problem called FINDGROUP. To
each instance 〈x, 0n〉 of FINDGROUP there is an associated an unknown
subgroup Gx ≤ Sn for which there is polynomial time membership test,
i.e. there is a polynomial-time function mem(x, g) that takes x and g ∈ Sn
as input and evaluates to true if and only if g ∈ Gx. The FINDGROUP

problem is to compute a generating set for Gx given 〈x, 0n〉 as input. The
rest of the section is devoted to the FPSPP upper bound for FINDGROUP

29



Fix an input instance 〈x, 0n〉 be an input instance of FINDGROUP. Our
goal is to compute a strong generator set for Gx ≤ Sn using the membership
function mem(., .) as a subroutine. The input instance being fixed, we will
sometimes drop the subscript and write G instead of the group Gx. Let
G(i) ≤ G denote pointwise stabiliser of {1, . . . , i}. Starting from i = n−1 we
compute a strong generator set for G(i) for decreasing values of i. Assuming
that we have a generator set for G(i), we show that a generator set for
G(i−1) can be computed in FPSPP. We give a polynomial time deterministic
algorithm making UP-like queries to a language L in NP which we now
define. Consider the NP-machine M defined in Algorithm 2 and let L be
the language accepted by M .

Input: x ∈ {0, 1}∗, an integer 0 ≤ i ≤ n, a subset S ⊆ Sn and a
partial permutation π

Verify using the membership test mem(.) that S ⊆ G(i)

1 Guess g ∈ G(i−1) i.e. guess g ∈ Sn and verify using mem(.).
Let H be the group generated by S.
Use Theorem 4.6 to compute the lexicographically least element g∗

of Hg.
2 if g 6= g∗ then Reject.;
3 if g∗ extends π then Accept. ;

else Reject.;
Algorithm 2: The NP machine for A

Here by a partial permutation we mean a partial function one-to-one
function from {1, . . . , n} to itself. Let the G(i−1)-orbit of i be {i1, . . . , ik}.
The set {g1, . . . , gk} where gs ∈ G(i−1) is any permutation that maps i to is
forms a right traversal of G(i) in G(i−1). Let g∗s denote the lexicographically
least element in the coset G(i)gs. We have the following proposition for the
language L

Proposition 4.8. Let S be a generator set for the group G(i). Consider
a partial permutation π whose domain includes {1, . . . , i}. Then the tuple
〈x, i, S, π〉 ∈ L if and only if π maps i to is and agrees with g∗s for some s.
For such an input, the machine M has only one accepting path.

Proof. The nondeterminism in the definition of M is due to step 1 of Algo-
rithm 2 where we guess an element g of G(i−1). Since g ∈ G(i−1), ig = is for
some s. If S generates G(i) then only the path that guessed g∗s survives (on
all other paths step 2 rejects). Furthermore, if 〈x, i, S, π〉 ∈ L then π agrees
with g∗s as well (we verified this in step 3). The proposition follows. More

30



generally if S generates a subgroup H of G(i) then the number of accepting
paths on such a partial permutation π will be the index [G(i) : H].

We are ready to give the FPSPP algorithm for FINDGROUP. To begin
with we already know G(n−1). Assume that a generating set Di of G(i)

is known. From Di we will compute a right traversal Ci of G(i) in G(i−1)

using the language L as oracle. The base algorithm will be a deterministic
polynomial time algorithm that makes UP-like queries to L, i.e. for all
queries that the machine makes to L the NP-machine of M described in
Algorithm 2 will have at most one accepting path. To begin with we have a
generating set Dn−1 = {1} of G(n−1). The complete algorithm is give below.

Ci ← ∅ for every 0 ≤ i ≤ n− 2.
Di ← ∅ for every 0 ≤ i ≤ n− 2.
Dn−1 = 1

1 for i = n− 1 down to 1 do
Let πi be the partial permutation that fixes all elements from 1
to i− 1.

2 for j = i+ 1 to n do
π′ ← π[i := j].

3 if 〈x,Di, i, π
′〉 ∈ L then

Ci ← Ci ∪ g where g = prefixSearch(x,Di, i, π
′).

end

end
Di−1 ← Di ∪ Ci.

end
Result: D0.
function prefixSearch(x,Di, i, σ)
begin

for k ← i+ 1 to n do
4 Find the element l not in the range of π′ such that

〈x, 0n, Di, i, j, π
′[k := l]〉 ∈ L by making queries to L.

σ := σ[k := l].
end
return σ.

end

Algorithm 3: FPL algorithm FINDGROUP

By π[l := m] we mean the partial permutation σ that agrees with π
except at l where its value is m. The function prefixSearch(x, i,Di, π

′)
completes the partial permutation π′ to an appropriate g∗s using L as an
oracle.

31



Proposition 4.9. The Algorithm 3 computes the generator set for G and
for all queries made to L the machine M described in Algorithm 2 has at
most one accepting path.

Proof. The invariant of the loop 1 is that Di generates the subgroup G(i).
In the beginning of the loop the invariant is true. Since inductively we have
made sure that Di generates G(i) by Proposition 4.8 there is at most one
accepting path for any queries made, whether in step 3 or in step 4. Hence
the polynomial time oracle machine makes only UP-like query to L whether
in the main loop or in the subroutine prefixSearch().

Proposition 4.8 also guarantees that the query in step 3 gives a “yes”
answer if and only if j is in the orbit iG

(i−1)
. When j is indeed in the orbit

iG
(i−1)

then prefixSearch(), by making queries to L, returns the lexico-
graphically least element in the coset G(i)g where g is some permutation
in G(i−1) that maps i to j. Since we cycle through all i < j ≤ n in the
loop 2, Ci will be a right traversal of G(i) in G(i−1) at the end of loop 2. As
Di−1 = Di ∪ Ci the loop invariant of loop 1 is maintained. Finally when
i = 0, D0 is the generator set for G.

The following theorem is a direct consequence of Proposition 4.9 and
Theorem 2.4.

Theorem 4.10. The FINDGROUP problem is in FPSPP.

4.5 The complexity of Graph Isomorphism

We now give SPP upper bound for the Graph Isomorphism. Since GI ≡pT
AUT it follows from the closure properties of SPP that it is sufficient to give
an FPSPP algorithm for AUT. We show that AUT is a special case of the
FINDGROUP problem. Without loss of generality assume that the vertex
set of the graph is {1, . . . , n}. Assume a suitable encoding of graphs say
via adjacency matrix. For encodings x of n vertex graph X let Gx be the
automorphism subgroup of X. There is a polynomial time membership test
for Gx as given the encoding x of a graph X, there is a polynomial time
algorithm to test whether a given permutation g ∈ Sn is an automorphism
of X. Hence AUT is a special case of FINDGROUP.

Similarly given permutation group G over Ω and a subset Σ of Ω there is
a polynomial time membership test for elements of GΣ. Hence the SetStab
problem is a special case of FINDGROUP. For the hidden subgroup problem
the hiding function φ gives a membership test: h ∈ H if and only if φ(h) =
φ(1). Using Theorem 4.10 we have the main result of this chapter.

32



Theorem 4.11. The Graph Isomorphism problem, the hidden subgroup
problem over permutation groups, the set-wise stabiliser problem etc. are
in SPP (or FPSPP in the case of functional problems).

4.6 Discussion

We have shown that the Graph Isomorphism problem is in the complexity
class SPP. We proved this by shown that given a graph X, a generator set
for Aut (X) can be computed by a polynomial time deterministic machine
making UP-like queries to an NP language. It is still open whether the
Graph Isomorphism problem is in UP.

An approach to Graph Isomorphism is via Graph Canonisation. A func-
tion f from G(Ω) to G(Ω) is a canonising function on graphs if it satisfies
the following properties: (1) for all X ∈ G(Ω) f(X) is isomorphic to X and
(2) graphs X and Y in G(Ω) are isomorphic if and only if f(X) = f(Y ).
Intuitively f pick a canonical element from each equivalence class. It is
not difficult to see that testing for isomorphism reduces to canonisation. In
fact the asymptotically fastest algorithm [75, 12] for Graph Isomorphism
is through Graph Canonisation. However the best known complexity theo-
retic upper bound for Graph canonisation is FPNP. It would be interesting
to show better upper bounds for this problem.

33



Chapter 5

Bounded colour multiplicity
Graph Isomorphism problem

In this chapter we study the bounded colour multiplicity Graph Isomorphism
problem, a restricted version of vertex coloured Graph Isomorphism prob-
lem. For a finite set C of colours, a C-coloured graph is a tripleX = (V,E, ψ)
where V is the set of vertices, E ⊆

(
V
2

)
is the set of edges and ψ : V → C

is the colouring that assigns to each vertex v ∈ V a colour ψ(v) ∈ C. An
isomorphism f between two C-coloured graphs X1 = (V1, E1, ψ1) and X2 =
(V2, E2, ψ2) if it exists, is an isomorphism from the graph (V1, E1) to graph
(V2, E2) that preserves the colours, i.e. for all u ∈ V1, ψ1(u) = ψ2(f(u)).
The Coloured Graph Isomorphism problem, for short, is to check whether
two vertex coloured graphs X1 and X2 are isomorphic. Note that GI is the
special case of CGI where every vertex has the same colour. On the other
hand using suitable graph gadgets CGI is reducible to GI (details can be
found in [33]).

We now define a restricted version of CGI, the bounded colour multiplic-
ity Graph Isomorphism problem or BCGI for short. The colouring map ψ
induces an equivalence relation on V ; u ∼ψ v if ψ(u) = ψ(v). A colour class
is an equivalence class under this equivalence relation. For a colour c ∈ C,
the c-colour class of X is the equivalence class {v ∈ V : ψ(v) = c}.

Definition 5.1 (BCGIb). Given two C-coloured graphs X1 and X2 such that
the size of each colour class of Xi, i = 1, 2, is bounded by a constant b, check
whether X1

∼= X2.

One of the first versions of Graph Isomorphism problem that was stud-
ied using group theoretic methods is the BCGI problem. Babai gave a

34



randomised polynomial time algorithm for BCGIb for each constant b [9].
This was improved to a deterministic polynomial time algorithm by Furst
et al [28]. Subsequently, Luks [47] gave a remarkable NC algorithm.

Recently Torán [68] has proved various hardness results for Graph Iso-
morphism. In particular, he proved that BCGIb is AC0-many one hard for
the logspace counting class ModkL for each constant k. A key step in the
hardness proofs is the construction of certain graph gadgets that enables the
simulation of addition modulo k. In fact, these graph gadgets can be used
to prove that BCGI is hard for the entire ModkL hierarchy [8, Appendix].

In this chapter we prove that BCGIb is in the ModkL hierarchy, where
the constant k and the level of the hierarchy depends on b [8]. Together with
the hardness for the ModkL-hierarchy, we have a fairly tight classification.
Though not explicitly mentioned, it appears that Luks’ NC-algorithm puts
BCGIb in NCk where the constant k depends on b (Luks solves a more
general problem and as a consequence derives the NC algorithm for BCGIb).
Since the ModkL hierarchy is contained in NC2 (even TC1) our result is an
improvement on Luks’ result.

We first prove that there is a logspace Turing reduction from BCGIb to
the pointwise stabiliser problem PWSc (definition in Section 5.1) for some
constant c that depends only on b. In this sequel we often say that a function
f can be computed in the ModkL-hierarchy if there is a logspace bounded
oracle machine MA that computes f for some language A in the ModkL-
hierarchy. We prove in this chapter that PWSc is in the ModkL hierarchy
where k is the product of all primes less than c. This would imply that
BCGIb is the ModkL hierarchy as BCGIb ≤log

T PWSc. We now define the
problem PWSc and give an outline of the ModkL algorithm for it.

5.1 The Pointwise stabiliser problem

Given a permutation groupG on Ω and a set ∆ ⊆ Ω, recall that the pointwise
stabiliser of ∆, G (∆), is the subgroup {g ∈ G : δg = δ for all δ ∈ ∆}. As
opposed to the setwise stabiliser, the pointwise stabiliser can be computed in
polynomial time (using Theorem 3.9 for example). However in this chapter
we are interested in a restricted version where G-orbits are of bounded size
which we show is in the ModkL-hierarchy. The polynomial time algorithm
for the general case that uses Theorem 3.9 does not help us here because it
is sequential.

Definition 5.2 (PWSc). Let G be a permutation group on Ω such that each
G-orbit is of cardinality at most c. Given a subset ∆ ⊆ Ω compute G (∆).

35



Recall the permutation group theoretic formulation of the Graph Isomor-
phism problem from Section 4.1. We generalise this to coloured graphs in a
straight forward manner: Let CG(Ω, C) denote the set of C-coloured graphs
with vertex set Ω. As before there is a natural action of the group Sym (Ω)
on CG(Ω, C): The graph (V,E, ψ) goes to (V,Eg, ψg) where ψg is the map
u 7→ ψ(ug

−1
). For a C-coloured graph X ∈ CG(Ω, C), the automorphism

subgroup Aut (X) is the stabiliser of the point X under this action. It is
easy to verify that the set of C-coloured graphs in CG(Ω, C) isomorphic to X
is exactly the Sym (Ω)-orbit containing X. If X and Y are two isomorphic
coloured graphs in CG(Ω, C) and g ∈ Sym (Ω) be such that Xg = Y then, as
before, the set of all isomorphisms between X and Y are exactly Aut (X)g.

Definition 5.3 (AUTb). Given a C-coloured graph X such that each colour
class is of cardinality bounded by b compute a generator set for Aut (X) as
a subgroup of Sym (V (X)).

Mathon’s result (Theorem 4.3) generalises to coloured graphs as well and
it can be show that the coloured graph isomorphism problem is logspace
Turing reducible to coloured automorphism problem. In particular there is
a logspace Turing reduction from BCGIb to AUT2b. To show that BCGIb
reduces to PWSc for some constant c that depends on b it is therefore suf-
ficient to give a logspace Turing reduction from AUTb to PWSc. We sketch
the logspace reduction [47, Section 7]1.

Consider an instance X = (V,E, ψ) in CG(V,C) of AUTb. Recall that
the colouring ψ of X partitions the vertex set V into disjoint colour classes
V1, . . . , Vm and for each i, #Vi ≤ b. Consider the group G =

∏
Sym (Vi)

acting on V . For 1 ≤ i ≤ j ≤ m define the sets Ωij = 2Vij , where Vij
denotes collection of all unordered pairs {u, v}, u ∈ Vi and v ∈ Vj . The
elements of set Ωij are subsets of unordered pairs {u, v}, u ∈ Vi and v ∈ Vj .
In particular consider the collection Eij defined as follows

Eij = {{u, v} ∈ E : u ∈ Vi and v ∈ Vj}.

The subsets Eij are points of Ωij . Define Ω = ∪Ωij . We have #Ωij ≤ 2b
2

and #Ω ≤ m2.2b
2
. The action of G on V (X) extends naturally to Ω and

hence G is a permutation group on Ω. If ∆ = {Eij : 1 ≤ i ≤ j ≤ m} then
the pointwise stabiliser of ∆ ⊆ Ω, G (∆), is the group Aut (X). Furthermore
G maps a point in Ωij to another point in Ωij and hence G-orbits are of size

bounded by c = 2b
2
. Given the instance X = (V,E, ψ) of AUTb, a generator

1Luks gives a NC-reduction but for a more general version.

36



set of G as a permutation group on Ω can be computed in FL. Hence the
following proposition.

Proposition 5.4. There is a logspace reduction from AUTb to PWSc where
c ≤ 2b

2
. Hence if for all constants c there is a constant k that depends only

on c such that PWSc is in the ModkL-hierarchy then for all constants b there
is a constant k′ that depends only on b such that BCGIb and AUTb are in the
Modk′L-hierarchy.

In the rest of the chapter we prove that PWSc is in the ModkL-hierarchy.
We give an outline of the strategy. The key step in our algorithm is what we
call “target reduction”. Given an instance (G,Ω,∆) of PWSc we compute a
subgroup G′ of G such that

1. G ≥ G′ ≥ G (∆).

2. For every G-orbit Σ containing a point of ∆, G′|Σ is a proper subgroup
of G|Σ.

We prove that target reduction can be performed in the ModkL-hierarchy
where k is the product of all primes less than c.

We now argue that the target reduction procedure can be used to com-
pute the pointwise stabiliser. Starting with G, by applying the target re-
duction procedure compute a subgroup G′ which is strictly smaller than G
on each of the orbits that contain points of ∆. Since G ≥ G′ ≥ G (∆),
G (∆) = G′ (∆). Moreover for each G-orbit Σ such that Σ ∩ ∆ 6= ∅, the
projection G′|Σ is a proper subgroup of G|Σ and hence #G′|Σ ≤

1
2#G|Σ.

We then repeat the target reduction procedure with G replaced by G′. Since
G-orbits are of size bounded by a constant c, after O(c. log c) iterations of
the target reduction step we converge to G (∆). Thus if the target reduction
step in in the lth level of the ModkL-hierarchy then PWSc can be solved in
the l.c. log c level of the ModkL-hierarchy. The detailed description of the
target reduction procedure is given in Section 5.5.

For the target reduction procedure we require a special strong generating
set for G. We consider a special normal series G = N0 B . . . B Nl = 1 of
length l bounded by a constant that depends only on c such that each
of the quotient group Ni/Ni+1 is Ti-semisimple for some simple group Ti.
Using this normal series we compute a strong generator set C of G. The
computation of the strong generator set C proceeds in l stages. Each of
this stage involves solving a certain normal closure problem for which we
give a FLModkL algorithm. The detailed procedure for computing the strong
generator set C is described in Section 5.4.

37



For computing the strong generator set C and for the target reduction
procedure we require some more group theory. The two important group
theoretic concepts we require is (1) the socle and (2) residual series of a
group. The normal series G = N0 D . . .DNl = 1 which is used to compute
the strong generator set C is obtained by patching up the residue series of
each of the constant sized groups Gi. The target reduction procedure makes
use of the O’Nan-Scott theorem (Theorem 5.9), a result on the structure of
socles of primitive permutation groups. In the next two sections we develop
the group theory required for this chapter.

5.2 Characteristic subgroups and Socles

In this section we develop some more group theory relevant for this chapter.
Most of the group theory that we require, albeit in a slightly different form,
is developed by Luks [47] for his NC-algorithm.

Definition 5.5 (Characteristic subgroup). A subgroup H of a finite group
G is a characteristic subgroup if all automorphisms of G maps H to itself.

In this context, notice that a normal subgroup of G is a subgroup that is
invariant under inner automorphisms of G whereas a characteristic subgroup
is invariant under all automorphisms. Hence characteristic subgroups are
normal subgroups. For a characteristic subgroup R of G, the restriction of
any G-automorphism to R is an R-automorphism. The following proposition
directly follows from the above discussion.

Proposition 5.6.

1. If R1 is a characteristic subgroup of G and R2 is a characteristic sub-
group of R1 then R2 is also a characteristic subgroup of G.

2. If R1 and R2 be characteristic subgroups of G then so is R1R2 and
R1 ∩R2.

3. Let R1 and R2 be normal subgroups of G such that R1 ∩R2 = {1}. If
R1R2 and R1 are characteristic subgroups of G then so is R2.

The entire group G and the trivial subgroup {1} are characteristic sub-
groups of G. The centre CG(G) of G, the subgroup of elements of G that
commute with all elements of G, is also a characteristic subgroup of G.

Let G be a nontrivial finite group. By a minimal normal subgroup of
G we mean a normal subgroup N EG different from {1} which is minimal

38



in the containment order, i.e. there is no proper subgroup of N other than
{1} that is normal in G. For a simple group T , the only minimal normal
subgroup is T itself. We now state an important lemma about minimal
normal subgroups of a group G ([24, Theorem 4.3A]).

Lemma 5.7. Let G be any group and let K be a minimal normal subgroup
of G. Then K = T1 × . . . × Tn where Ti’s are all isomorphic to a simple
group T (i.e. K is T semisimple). Moreover for any i and j there is an
element g ∈ G such that Ti = g−1Tjg.

Having defined the minimal normal subgroup we define the socle of a
group G, an important characteristic subgroup of G.

Definition 5.8 (Socle). For a finite group G the socle Soc (G) is the sub-
group generated by the set of all minimal normal subgroups of G.

Clearly any automorphism of G maps minimal normal subgroups to
minimal normal subgroups and hence fixes the socle. Therefore Soc (G)
is a characteristic subgroup of G. We now state a restricted version of the
O’Nan-Scott theorem, a theorem on the structure of socles of primitive per-
mutation groups, suitable for our purposes. A complete statement of the
theorem (Theorem 4.1A of [24]), its proof and its applications to the study
of permutation groups can be found in Chapter 4 of the book by Dixon and
Mortimer [24].

Theorem 5.9 (O’Nan-Scott theorem). Let G be a primitive permutation
group on Ω with socle Soc (G) = K. Then K is transitive and T -semisimple
for some simple group T . Furthermore exactly one of the following is true
for K.

1. K is abelian in which case K is elementary abelian and regular on Ω.
Also K is the unique minimal normal subgroup of G. For an α ∈ Ω,
the group Kα is the trivial group {1}.

2. K is nonabelian and is the unique minimal normal subgroup of G. For
α ∈ Ω, Kα is a proper subgroup of K.

3. K is nonabelian and is a product K = K1×K2, where K1 and K2 are
isomorphic. The subgroups K1 and K2 are the only minimal normal
subgroups of G and each Ki is regular on Ω. Furthermore the cen-
traliser of K1 in G, CG(K1), is K2 and vice-versa. For α ∈ Ω, Kα is
a diagonal subgroup of K1 ×K2.

39



5.3 Residues and Residual Series

In the previous section we studied an important characteristic subgroup,
the socle. Let G be a finite group. For any simple group T , we associate a
characteristic subgroup of G called its T -residue.

Definition 5.10 (Residue subgroup). Let T be a finite simple group. For
a group G we say that the normal subgroup N is a T -residue of G if G/N
is T -semisimple and for all H EG contained in N , G/H is T -semisimple if
and only if H = N .

To prove that T -residues are unique, we require the following two lemmas
on normal subgroups of semisimple groups.

Lemma 5.11. Let G be a semisimple group with a normal subgroup H.
Then G = L×H for some normal subgroup L of G. Moreover G/H is also
semisimple.

Proof. Let G be T -semisimple. Depending on whether T is abelian or not
we have two cases.

T is abelian In this case T = Fp for some prime p. The group G is
therefore a vector V over Fp. The subgroup H corresponds to a subspace W
of V . We can decompose V as the direct sum V = W ⊕W ′. The required
group L is the subspace W ′. Clearly G/H is isomorphic to the subspace L
and is hence Fp-semisimple.

T is nonabelian Let G = T1 × . . . × Tk where each Ti is isomorphic to
T . Firstly the projection Hi of H on any of the group Ti is either trivial or
the full group Ti. Otherwise Hi will be a nontrivial normal subgroup of Ti
which contradicts the fact that Ti is simple. Thus we assume, with out loss of
generality, that there is an integer l ≤ k such thatH projects onto each of the
group Ti for 1 ≤ i ≤ l and is trivial on Tj for l < j ≤ k. By Scott’s Lemma H
is a product of diagonals of the groups {Ti}1≤i≤l. Consider any two indices
i, j ≤ l. Any diagonal group Diag (Ti × Tj) is not a normal subgroup of
Ti×Tj . To see this consider an element 〈a, ψ(a)〉 ∈ Diagψ (T1 × T2) for some
isomorphism ψ : Ti → Tj . Let b be any element of Ti that does not commute
with a then 〈1, ψ(b)〉−1〈a, ψ(a)〉〈1, ψ(b)〉 = 〈a, ψ(b−1ab)〉 6∈ Diagψ (Ti × Tj).
Therefore H is exactly the subgroup T1 × . . .× Tl. The required group L is
Tl+1 × . . .× Tk. Clearly G/H = L is T -semisimple.

40



The next lemma follows directly from Lemma 5.11 (consider the semisim-
ple group G/N and its normal subgroup H/N).

Lemma 5.12. Let G be any group with a normal subgroup N such that G/N
is semisimple. Let H be any subgroup of G containing N . Then there is a
normal subgroup L of G containing N such that G = LH and L ∩H = N .

We now prove that for any simple group T , the T -residue is unique. This
a slightly weaker version of Lemma 6.2 stated in Luks [47] and is sufficient
for our purpose. The proof of the more general version [47, Lemma 6.2] is
along similar lines.

Lemma 5.13 (Luks). Let G be any finite group. For any simple group T
there is a unique T residue, i.e. there is a normal subgroup N of G such that
G/N is T -semisimple and for any H E G such that G/H is T -semisimple,
H contains N .

Proof. The proof is via induction on the order of G. Firstly, if G itself is
T -semisimple then lemma is clearly true; the unique T -residue is {1}. This
is the base case of our induction.

We assume the assertion to be true for all groups of order less than k.
Consider a group G of order k. If possible, let N1 and N2 be two distinct
T -residues of G. Let H = N1 ∩N2 and N = N1N2. From the minimality of
Ni’s it follows that H is a strict subgroup of Ni for i = 1, 2. We have two
cases.

Case 1 (H 6= {1}): In this case G/H is a group of smaller cardinality than
G and hence, by induction hypothesis, has a unique T -residue L/H for some

normal subgroup L of G containing H. SinceNi/HEG/H and G/H
Ni/H

∼= G/Ni

is T -semisimple, Ni/H contains L/H. Therefore Ni contains L for i = 1, 2.
Therefore L ⊆ N1 ∩ N2 = H and since L contains H, L = H. However
G/L ∼= G/H

L/H and hence is T -semisimple. This contradicts the minimality of
Ni’s.

Case 2 (H = {1}): We prove that in this case G itself is T -semisimple.
Firstly, N = N1N2 = N1 × N2. Hence the subgroup N1 is isomorphic to
N1N2/N2 and since N1N2/N2EG/N2, is itself T -semisimple (Lemma 5.11).

Consider the group G with normal subgroup N2. The quotient group
G/N2 is T -semisimple and N is a normal subgroup of G containing N2.
Using Lemma 5.12 we have a normal subgroup L of G such that L∩N = N2

and G = LN . Since N = N1 × N2 and L ≥ N2 it follows that G = LN1.
But L ∩N1 = {1} and hence G = L×N1.

41



Having proved that G = N1 × L it is easy to see that L itself is T -
semisimple. This is because L is isomorphic to G/N1 which is T -semisimple.
Hence G = N1×L is T -semisimple. This however contradicts the minimality
of N1 and N2 as the unique T -residue of G is {1}.

In view of Lemma 5.13, we use ResT (G) to denote the unique T -residue
of G. For any simple group T since the T -residue of G is unique, any
G-automorphism has to map ResT (G) to itself. Hence ResT (G) is a char-
acteristic subgroup of G. Based on residues, we can define an important
normal series called the residual series.

Definition 5.14 (Residual series). A residual series of G is a series G =
R0 D . . . D Rl = {1} where for all 1 ≤ i ≤ l, Ri = ResTi (Ri−1) for some
simple group Ti.

In fact from Proposition 5.6 it follows that the residual series is a series
of characteristic subgroups. We now prove an important property of residual
series of primitive permutation group due to Luks [47, Lemma 6.3].

Lemma 5.15 (Luks). Let G be a primitive permutation group acting on Ω
and let G = R0B. . .BRt = {1} be any residual series then the last nontrivial
subgroup in the series, is the socle of G.

Proof. We assume that t > 1 for otherwise G itself is T -semisimple, hence
is its own socle and we are through.

Let S be the socle of G. The group G being primitive, it follows from
the O’Nan-Scott theorem that the socle S and hence all the minimal normal
subgroups of G are T -semisimple for some simple group T .

First let us suppose that Rt−1 does not contain S. Since Rt−1 is a normal
subgroup of G there is a minimal normal subgroup K of G that is contained
in Rt−1. This rules out cases 1 and 2 of the O’Nan-Scott theorem as in those
cases G has a unique normal subgroup which is also the socle S. Thus G
has exactly two minimal normal subgroups K1 and K2, S = K1 ×K2 and
Rt−1 contains one of them say K1. Let s be the largest index i such that
Ri contains S. Clearly s < t − 1 and Rs+1 ≥ Rt−1 6= 1. Moreover Rs+1

contains K1 but not K2.
The group Rs/Rs+1 is semisimple and Rs+1S is a normal subgroup of

Rs containing Rs+1. Therefore by Lemma 5.12 we have a subgroup L of Rs
such that Rs = LRs+1S and L ∩ Rs+1S = Rs+1. However since L contains
Rs+1 and hence K1 it follows that Rs = LK2. Furthermore L ∩ K2 = 1.
Thus Rs = L × K2 and every element of L commutes with K2. This is
possible only if L = K1 as by the O’Nan-Scott theorem CG(K2) = K1.

42



For a T -semisimple group G, ResT ′ (G) is either 1 or the whole of G
depending on whether T ′ = T or not. We have proved that if Rt−1 does not
contain the socle S then Rs = S which is T -semisimple by the O’Nan-Scott
theorem. Since Rs+1 is a proper subgroup of Rs it follows that Rs+1 =
ResT (Rs) = 1. This however contradicts the fact that Rs+1 ≥ Rt−1 6= 1.
Hence Rt−1 contains the socle S.

Having proved that Rt−1 contains S it is easy to see that Rt−1 is indeed
the socle. The group Rt−1 being T -semisimple there is a subgroup L of R
such that L×S = Rt−1 (Lemma 5.11). It follows from Proposition 5.6 that
L is a characteristic subgroup of G. This is not possible unless L is the trivial
group otherwise there is a minimal normal subgroup K of G contained in L
and K ≤ S ∩ L.

5.4 Strong generator set revisited

Recall that for every decreasing tower of groups G = G0 ≥ . . . ≥ Gt = {1}
we can associate a generator set called the strong generator set. We now
generalise this to relative strong generator set. Let H be a subgroup of G
and let G = G0 ≥ . . . ≥ Gt = H be a decreasing sequence of groups from
G to H. Let Ci denote the coset representatives of Gi in Gi−1. Then the
set C = ∪Ci is called a strong generator set of G relative to H, SGS of
G rel H for short. For any element g ∈ G there is a unique h in H such
that g = g1 . . . gth where gi ∈ Ci. By sift of g with respect to the strong
generator set C we mean this h. We will use Sift(g) to denote the sift of g
with respect the strong generator set C. The sift of an element is not unique
and depends on the choice of the coset representatives Ci.

A semisimple series from G to a normal subgroup N is a normal series
G = N0D. . .DNt = N where the quotient groups Ni/Ni+1 are Ti-semisimple
for simple groups Ti. We associate a strong generator set for such a series.
Let the quotient group Ni/Ni+1 be

∏
j Tij where each Tij is isomorphic to Ti.

Consider a normal series (normal in Ni) given by Ni = Ni,0 B . . .BNi,ni =
Ni+1 where Ni,s/Ni+1 is the group

∏
j>s Tij . Let Cij be the right (or left)

traversal of Ni,j over Ni,j+1. Then C = ∪i,jCi,j forms a strong generator set
for G rel N with respect to the subnormal series {Ni,j}.

We are interested in permutation group G over Ω with bounded orbits.
The simple groups {Ti}0≤i<t that occur will all be of order bounded by
a constant and the semisimple series which we construct for G will be of
bounded length. Furthermore, the computation of strong generator set C is

43



done inductively by computing the strong generator set of G relative to Ni

starting with i = 0. The fact that the series {Ni}ti=1 is of bounded length
is important for the ModkL-hierarchy upper bound. Hence in this context
it is more natural to associate the semisimple series {Ni}ti=1 to the strong
generator set C than the subnormal series {Ni,j}.

We now prove a property analogues to Proposition 3.2 of Luks and
McKenzie [50].

Proposition 5.16. Given a group G via a generator set A. Let G = N0 D
. . . D Nt = N be a semisimple series from G to N and let C = ∪ijCij be
the associated strong generator set of G relative to N . Let S be the set
containing the following elements:

1. Sift(g) for all g ∈ A.

2. Sift(x−1yx) for all x ∈ Cij and y ∈ Clm, (i, j) < (l,m).

3. Sift(xy) for all x, y ∈ Cij for all i and j.

Then the normal closure NCLG(S) of S in G is N .

Proof. The proof is similar to that of Proposition 3.2 of Luks and McKen-
zie [50]. The set S is clearly a subset of N and since N is a normal subgroup
of G we have NCLG(S) E N . To prove the converse consider any element
h ∈ N . There exists elements y1, . . . , ym in A such that h = y1 . . . yl. For
ease of notation we assume that l = 2 and h = xy for x, y ∈ A. The general
case is similar. Since S contains the sifts of all the elements of A there exists
xij ∈ Cij and ylm ∈ Clm such that x =

∏
i,j xijs1 and y =

∏
lm yijs2 where

s1 and s2 are elements of S and hence NCLG(S). Hence h is given by

h =

(∏
ij

xij

)
s1

(∏
lm

ylm

)
s2. (5.1)

We prove that h can be written as
∏
ij zijs where s ∈ NCLG(S). The first

task is to push down s1 to the end. For any y ∈ G since NCLG(S) is normal
subgroup of G we have yNCLG(S) = NCLG(S)y and therefore whenever we
have a product of the form h = . . . sy . . ., s ∈ NCLG(S) and y ∈ C, we can
replace it with h = . . . ys∗ . . . for some s∗ ∈ NCLG(S).

For products of the form h = . . . yx . . . where x ∈ Cij and y ∈ Clm with
(i, j) < (l,m), since S contains Sift(x−1yx) we can rewrite it as

h = . . . yx . . . = . . . x

( ∏
(r,t)>(i,j)

urt

)
s . . . , urt ∈ Crt. (5.2)

44



Similarly when h = . . . xy . . . where x, y ∈ Cij , since S contains Sift(xy) we
can rewrite h as

h = . . . xy . . . = . . . z

(∏
r>i

∏
t

urt

)
s . . . ., urt ∈ Crt. (5.3)

By repeatedly rewriting the expression of h in Eq. 5.1 using Eqs. 5.2 and 5.3,
we have h = (

∏
i

∏
j zij)s for some s ∈ NCLG(S). However since h is in N ,

we have zij = 1 for all i and j. Therefore h = s and hence h ∈ NCLG(S).

5.4.1 Computing the strong generator set

We are give a generator set A for a permutation group G on Ω with orbits
of size bounded by a constant c. We will find the strong generator set for
G with respect to a semisimple series of length bounded by a constant that
depends only on c. The semisimple series which we consider is similar to
the residual series of G.

Consider a permutation group G on Ω with orbits Ω1, . . . ,Ωm all of size
bounded by an constant c. Let Gi’s be the projection of G onto Ωi, Then
Gi’s are all of order bounded by c! as #Ω ≤ c. Let T = {T1, . . . , Tk} be the
collection of all simple groups of order at most c! then k = #T is a constant
for us that depends only on c. For 1 ≤ i ≤ m define a k length normal
series Gi = Ri,0D . . .DRi,k where Ri,s = ResTs (Ri,s−1). The group Ri,k is a
proper subgroup of Gi as there exists a normal subgroup Hi of Gi such that
Gi/Hi is simple and isomorphic to some Ts. Repeat this process starting
with Ri,k in place of Gi. We would have to repeat this at most c. log c times
before we hit the trivial group {1}. Thus, for each 1 ≤ i ≤ m, we have a
residual series Gi = Ri,0D . . .DRi,l = {1} where the constant l depends only
on c. Let Rs denote the product group Rs =

∏
iRi,s then R0D . . .DRl is a

residual series for the product group
∏
iGi. Since for 1 ≤ i ≤ m the group

Gi is of order less that c! in FL we compute the groups Ri,s and hence the
product groups Rs for each 1 ≤ s ≤ l.

Let NsEG be the normal subgroup G∩Rs then G = N0D . . .DNl = {1}
is a semisimple series for G as Ni/Ni+1 = (G ∩ Ri)/(G ∩Ri+1) ↪→ Ri/Ri+1

via the map xNi+1 7→ xRi+1. We prove the following important property
due to Luks [47, Lemma 6.4].

Proposition 5.17 (Luks). Let H ≤ Sym (Ω) be any subgroup of the product∏
iGi. For all i, if H|Ωi = Gi then H ∩Rs|Ωi = Ri,s, 1 ≤ s ≤ l.

45



Proof. Let ψ denote the homomorphism that restricts an element of the
product group R0 =

∏
iGi to its action on Ωi. Fix an s. Let L and M be

the groups H ∩ Rs and H ∩ Rs+1 respectively. The groups H ∩Rs|Ωi and
H ∩Rs+1|Ωi are ψ(L) and ψ(M) respectively.

First we prove that ψ(M) is a normal subgroup of ψ(L) and the quotient
group ψ(L)/ψ(M) is T -semisimple. As L ≤ Rs and M = L ∩ Rs+1 the
map gM 7→ gRs+1 is an embedding of L/M into Rs/Rs+1. The quotient
group L/M is thus T -semisimple. Let K be the kernel of the map ψ in L.
Consider the normal subgroup MK of L. Since ψ maps K to 1 it follows
that ψ(M) = ψ(MK). However MK is a normal subgroup of L containing
K and hence ψ(MK) = ψ(M) is a normal subgroup of ψ(L). The quotient

group ψ(L)/ψ(M) is thus L/K
MK/K = L/MK. However L D MK D M is

a normal series with L/M being T -semisimple. The group MK/M is a
normal subgroup of the semisimple group L/M . Hence by Lemma 5.11

L/MK ∼= L/M
MK/M is also T -semisimple. We have thus proved that ψ(M)

is a normal subgroup of ψ(L) and the quotient group ψ(L)/ψ(M) is T -
semisimple. If ψ(L) is Ri,s then this is impossible unless ψ(M) is Ri,s+1.
Let ψ(H) = ψ(H ∩ R1) = Gi = Ri,0. Assume that ψ(H ∩ Rs) = Ri,s for
some s. Then we have just proved that ψ(H ∩Rs+1) = Ri,s+1. Now repeat
the argument with s replaced by s+1. As result we have ψ(H∩Rj) = Ri,j+1

for all 1 ≤ j ≤ l. This completes the proof.

In particular, Proposition 5.17 proves that for all s, Ns|Ωi is Ri,s. Thus
for any G-orbit Σ, G|Σ = N0|Σ D . . . D Nl|Σ is a residual series for Gi.
Hence we call this series a locally residual series. We show that a strong
generator set for G with respect to this locally residual generator set can be
computed in the ModkL-hierarchy. A property which we use repeatedly is
the following:

Proposition 5.18. Let N and K be two normal subgroups of G such that
N ≥ K. Let C and D be the strong generator set of G relative to N and
N relative to K respectively. Then C ∪D gives a strong generator set of G
relative to K.

Firstly, since each of the groups Gi are constant sized, the residual series
Gi = Ri,0 D . . . D Ri,l = {1} for each Gi can be computed separately in
logspace. We prove by induction on i that an SGS Ai of G rel Ni can be
computed in the ith level of the ModkL-hierarchy where k is the product of
all primes less that c. In addition, we prove inductively that given g ∈ G,
Sift(g) with respect to Ai can also be computed in ith level of the ModkL-
hierarchy. This sifting procedure is required for our induction step.

46



To begin with we know the strong generator set of G relative to N0.
Assuming we have already computed the strong generator setAi ofG relative
to Ni. Using the sifting procedure for Ai as an oracle, we compute a set S
such that NCLG(S) = Ni (Proposition 5.16). To complete the induction we
give FLModkL algorithms for the following.

(1) Given S and the SGS of G rel Ns compute the strong generator set C
of Ns rel Ns+1.

(2) Given x ∈ Ns compute Sift(x) with respect to the SGS C.

Depending on whether Ns/Ns+1 is abelian or not we have two cases. If
Ns/Ns+1 is abelian then it is Fp-semisimple for some prime p. We prove
that in this case both (1) and (2) can be done in FLModpL. On the other
hand when Ns/Ns+1 is non-abelian we prove that both (1) and (2) can be
done in FL.

Computing the strong generating set: nonabelian case

Let Li and Mi denote the group Ri,s and Ri,s+1 respectively. Let L and M
be the product groups Rs =

∏m
i=1 Li and Rs+1 =

∏m
i=1Mi. Then Ns and

Ns+1 are the G ∩ L and G ∩M respectively. Our task is to compute the
strong generator set of Ns rel Ns+1 for which we give an FL algorithm.

The group L/M is T -semisimple as each Li/Mi is T -semisimple. Conse-
quently, L/M is of the form T1 × . . . × Tr where Ti ∼= T for all 1 ≤ i ≤ r.
The quotient group Ns/Ns+1 can be faithfully embedded into

∏m
i=1 Li/Mi

via the map xNs 7→ xM and hence can be seen as a subgroup of L/M .
Furthermore since Ns projects onto Li for 1 ≤ i ≤ m (Proposition 5.17), by
Scott’s Lemma we know that Ns/Ns+1 is a product of diagonal groups of
T1 × . . . × Tr, i.e. there is a partition I = {I1, . . . , Is} of indices {1, . . . , r}
such that

Ns/Ns+1 =
s∏
i=1

Diag

(∏
j∈Ii

Tj

)
.

Let φi : L 7→ Ti be the homomorphism obtained by composing the
natural quotient homomorphism from L to L/M and the projection map to
Ti. Fix an index ij ∈ Ij for each Ij . Since φi restricted to Ns is onto (because
Ns projects onto Li) for each x ∈ Tij one can associate a permutation x∗ in
Ns such that φij (x

∗) = x and for all i not in Ij , φi(x
∗) is identity. Let Bj be

the set of such x∗ one for each x ∈ Tij . The set ∪jBj gives strong generator
set of Ns rel Ns+1. We will show that this strong generator set for Ns rel

47



Ns+1 can be computed in FL. To this end we prove that the following can
be computed in FL.

1. The partition I.

2. The collection of sets {Bj}j

3. Sifts of g ∈ Ns with respect to the SGS ∪tBt.

Computing I: For indices i and j we say that i is linked to j if i and j
falls in the same partition. Clearly i and j are linked if and only if Ns/Ns+1

restricted to Ti×Tj is a diagonal group Diag (Ti × Tj). The relation i ∼ j if
i is linked to j, is an equivalence relation and the equivalence classes give the
partition I. Consider an undirected graph G with vertex set V = {1, . . . , r}
and edge set {{i, j} : i and j are linked}. Each connected component Ck
in G corresponds to diagonal part of Ns/Ns+1. Hence to compute I it is
sufficient to compute the connected components of G.

To compute the graph G, it is sufficient to give an algorithm to check
whether Ti and Tj are linked. For this we compute Ns/Ns+1 restricted to
Ti × Tj . Let φij denote the projection of L/M to Ti × Tj . We give an FL
algorithm (Algorithm 4) that computes a subset Di,j of elements in Ns such
that the projection from Di,j to Ti×Tj is φij(Ns). Since φij(Ns) is of order
bounded by a constant that depends only on c, one can easily determine
whether it is Ti × Tj or Diag (Ti × Tj) (by checking the order for example).

Initialise Di,j to be the set of x∗ one for each x ∈ φij(S).
repeat

Let S′ be the set g−1sg for each g ∈ A and s ∈ Di,j .
Add to Di,j all elements s in S′ such that no two elements of
Di,j have the same image under φij .

until Di,j is not modified ;
return Di,j

Algorithm 4: Computing Ns/Ns+1 restricted to Ti × Tj

Using Algorithm 4 we compute the edges of the graph G. The graph G
is a disconnected set of cliques one for each diagonal component. In FL we
compute its connected components. Let C1, . . . , Cs be the connected compo-
nents of G. Then the vertices of Ck gives us Ik. Thus in FL we compute the
partition I.

Computing Bk: To compute the set Bk the main algorithmic step is the
computation of elements gk ∈ Ns, 1 ≤ k ≤ s such that φik(gk) 6= 1 and

48



φij (gk) = 1 for all j not equal to k. Given two i and j such that Ti and
Tj are not linked, using Algorithm 4 one can compute an element g that
is nontrivial on Ti and trivial on Tj . However we want elements gk that is
nontrivial on Tik and trivial on all other Tij simultaneously. We make use
of the following proposition.

Proposition 5.19. Let x and y be permutations in Ns. Let X denote
the indices i such that φi(x) is trivial. Similarly let Y be the set of all j
such that φj(y) is trivial. Then the commutator [x, y] has the property that
φj([x, y]) = 1 for all j ∈ X ∪ Y .

Proof. For all i ∈ X since φi(x) = 1 we have φi([x, y]) = φi(x
−1y−1xy) =

φi(y
−1y) = 1. Similarly for all j ∈ Y , φj([x, y]) = 1. Therefore for all

k ∈ X ∪ Y φk([x, y]) = 1.

We use Proposition 5.19 to compute the required permutations gk. For
this purpose we need iterated commutators. Let [h1, . . . , hk] be defined as

[h1, h2] = h−1
1 h−1

2 h1h2,

[h1, . . . , hi, hi+1] = [[h1, . . . , hi], hi+1] .

To compute gk we compute a sequence of elements h1, . . . , hs satisfying
the following properties.

1. φik(h1) 6= 1,

2. φik([h1, . . . , hj ]) 6= 1 for all j and

3. φij (hj) = 1 for all 1 ≤ j ≤ s and j 6= k.

It follows from Proposition 5.19 that given h1, . . . , hs with the above
mentioned properties, gk = [h1, . . . , hs] has the required properties: φik(gk)
is nontrivial and φij (gk) = 1 for 1 ≤ j ≤ s and j 6= k. We give the logspace
algorithm (Algorithm 5) to find such a sequence h1, . . . , hs.

In Algorithm 5 the step 1 is possible only because Tik is nonabelian and
simple. The simplicity of Tik guarantees that its centre is trivial and hence
for any nontrivial element g of Tik there is an h ∈ Tik such that g and h do
not commute. The loop invariant is that g’s value is φik([h1, . . . , hj ]) 6= 1.
Step 1 ensures that (1) φik([h1, . . . , hj ]) 6= 1 and (2) φij (hj) = 1. There-
fore Algorithm 5 indeed computes a sequence h1, . . . , hs with the desired
properties.

Having got the sequence h1, . . . , hs we show that the iterated commutator
[h1, . . . , hs] can be computed in logspace. It is sufficient to compute the

49



Let hi be any permutation such that φik(h1) 6= 1. Such an element
has to exist in the set S itself.
g ← φik(h1)
for j = 1 to s and j 6= k do

1 Using Algorithm 4 find an hj such that φik(hj) does not
commute with g and φij (hj) = 1.
h← φik(hj)
g ← [g, h]
output hj

end
Algorithm 5: Computing hi’s

action of [h1, . . . , hs] separately for each G-orbit. The iterated commutator
[h1, . . . , hs] is a formula over the hi’s, and since each G-orbit is of bounded
size, the action of [h1, . . . , hs] restricted to a G-orbit Ωi can be computed
by a bounded width branching program. Hence the iterated commutator
can be computed in FL (in fact ever in NC1). Thus we have the following
proposition.

Proposition 5.20. Let G be a permutation group with bounded-size orbits.
Given h1, . . . , hn ∈ G, the iterated commutator [h1, . . . , hn] can be computed
in deterministic logspace.

Using Algorithm 5 and Preposition 5.20, for all 1 ≤ k ≤ s, we compute
in FL a permutation gk ∈ Ns such that φik(gk) 6= 1 and for all 1 ≤ j ≤ s,
j 6= k φij (gk) = 1.

Finally from the permutations gk, we now describe how the set Bk can
be computed. Since Tik is simple, Tik = φik (NCLG(gk)). We compute a
set Bk of distinct inverse images of φik(NCLG(gk)), 1 ≤ k ≤ l. Start with
Bk = {gk}. The algorithm consists of #T stages in which we update Bk.
At every stage update Bk by adding, for every element g in the generating
set for G and x ∈ Bk, the elements y = g−1xg to Bk if φik(y) 6∈ φik(Bk).
We repeat this process till φik(Bk) generates Tik . Since #Tik = #T ≤ c! we
require at most c! stages each of which is in FL. Thus the sets Bk, 1 ≤ k ≤ s
can be computed in FL.

Having computed the sets Bk, we compute the strong generator set
B = ∪sk=1Bk of Ns rel Ns+1.

Computing sifts:
Finally we explain how to compute Sift(x) for any x ∈ Ns with respect

50



to the computed strong generator set B = ∪sk=1Bk of Ns rel Ns+1. Given
x ∈ Ns in FL we compute for each, 1 ≤ k ≤ s, a permutation yk ∈ Bk such
that φik(yk) = (φik(x))−1. The sift of x is given by Sift(x) = x

∏s
k=1 yk.

This completes the nonabelian case of our induction step.

Computing the strong generating set: abelian case

We are given a set S ⊂ Ns such that NCLG(S) = Ns. Our task is to compute
the strong generator set of Ns rel Ns+1. Since Ns/Ns+1 is semisimple and
abelian, it is Fp-semisimple for some prime p ≤ c. First we describe FLModpL

algorithms for some basic linear algebraic problems over Fp that follows from
the results of Buntrock et al [20] . These will be used as subroutines in our
FLModpL algorithm for computing the strong generator set of Ns rel Ns+1.

Proposition 5.21. For a prime p consider the vector space V = Frp then

1. Let B = {v1, . . . ,vn} be a subset of V . Given v ∈ V , in ModpL we
can check whether v is contained in the subspace U of V spanned by B.
Furthermore, if v ∈ U then in FLModpL we can compute a1, . . . , an ∈
Fp such that v =

∑n
i=1 aivi.

2. Let B = {v1, . . . ,vn} be a subset of V not necessarily linearly indepen-
dent and let U be the subspace of V spanned by B. Then in FLModpL

we can compute a subset B′ ⊆ B such that B′ is a basis for U .

Proof. Let e1, . . . , em denote the standard basis for V = Frp and let vi =∑m
j=1 vi,jej for 1 ≤ i ≤ n. Let v =

∑m
j=1 vjej . Let A be the matrix (vi,j),

1 ≤ i ≤ n and 1 ≤ j ≤ m. Let b the column vector (v1, . . . , vm)T . Then
the vector v is in the span of B if and only if the system of linear equation
Ax = b has a solution. Furthermore if xi = ai, 1 ≤ i ≤ n is a solution to
Ax = b then v =

∑n
i=1 aivi. Part 1 then follows from Theorem 2.5.

To prove part 2 consider the FLModpL algorithm that cycles over all
1 ≤ i ≤ n and outputs vi if it is not in the span of the set {v1, . . . ,vi−1}.
Clearly the output B′ is a basis of the vector space spanned by B.

We fix some notations: Recall that Ri,s/Ri,s+1 is isomorphic to vector
space over Fp which we denote by Vi. Let V be the direct sum ⊕mi=1Vi. Then
Rs/Rs+1 is isomorphic to V . For a permutation x ∈ Rs let vx denote the
image of xRs+1 under the above mentioned isomorphism. If x and y are
permutations in L then for integers a and b it follows that vxayb = ãvx+ b̃vy

where ã and b̃ are the elements a (mod p) and b (mod p) of Fp respectively.
Furthermore the vector space structure of Rs/Rs+1 is obtainable effectively

51



in logspace, i.e. for an element x ∈ Rs one can compute the image vx of the
coset xRs+1 in V in FL. This is because each of the groups Ri,s are constant
sized. Since Ns

Ns+1
↪→ Rs/Rs+1 it is isomorphic to a subspace of V which

denote by W . We are given a subset S ⊆ Ns such that NCLG(S) = Ns.
The group NCLG(S) is the group generated by the set {g−1sg|s ∈ Sg ∈

G} and hence the conjugation action can be seen as a linear action of G on
V as we now explain: For each element g ∈ G, g maps vh, h ∈ Rs, to the
vector vh∗ where h∗ = g−1hg. Since both Rs and Rs+1 are normalised by
G, each g ∈ G is an invertible linear transformation from V to V .

First S ⊆ Ns and Ns is a normal subgroup of G. Therefore NCLH(S) is a
subgroup of Ns that is closed under conjugation by elements of H. Thus we
have the following observation of Luks and McKenzie [50] about the normal
closure NCLH(S).

Proposition 5.22 (Luks and McKenzie). Let H ≤ G and let W be the sub-
space {vx|x ∈ NCLH(S)}. Then W is the smallest subspace of V containing
{vs|s ∈ S} and closed under the action of elements of H

We compute the generator set of NCLNj (S) rel Ns+1 inductively starting
with j = s down to j = 0 using the SGS of Nj rel Ns that is already
computed. Let Uj denote the subspace of V associated to NCLNj (S)/Ns+1

then it follows from 5.22 that Uj is the closure of {vs|s ∈ S} under Nj . We
compute a basis for Uj .

To begin with since Ns/Ns+1 is commutative. It follows that S ∪Ns+1

is a generating set for NCLNs(S) and hence Us is spanned by {vs|s ∈ S}.
Assume that we have already computed a basis for Uj+1. Our task is to
compute a basis for Uj using the basis for Uj+1 and the strong generator set
C of Nj rel Nj+1. The vector space Uj is the span of gUj+1 where g ranges
over the distinct coset representative of Nj+1 in Nj .

Proposition 5.23. Given a basis for Uj+1 we can compute a basis for Uj
in ModpL.

Proof. Recall that Nj/Nj+1 is T -semisimple for some simple group T . Since
Uj+1 is stabilised by Nj+1 we can assume that Nj/Nj+1 is acting on Uj+1.
Depending on whether Tj is abelian or not we have two cases.

T is non-abelian We prove that in this case it is sufficient to find the
closure of Uj+1 under all monomials M over C which are of degree bounded
by a constant c′ that depends only on c. Recall that Rj/Rj+1 = T1 × . . .×
Tn for some integer n and there is a partition I = {I1 . . . Ir} such that

52



Nj/Nj+1 is product of diagonal groups Diag
(∏

i∈Ik Ti

)
, 1 ≤ i ≤ r. Each of

the diagonal component Diag
(∏

i∈Ik Ti

)
is isomorphic to T and the strong

generator set C is the union C = ∪Ck where Ck consists of one element

g ∈ Nj for each gNj+1 ∈ Diag
(∏

i∈Ik Ti

)
.

Consider any element g ∈ C. We say that g is trivial on Ωi if g|Ωi ∈
Ri,j+1. For each g ∈ C there exists hg ∈ Nj+1 such that g|Ωi = h|Ωi for all
Ωi for which g is trivial. Consider the elements µg = hg−g, g ∈ C. Then Uj
is the space spanned by MUj+1 where M ranges over all (non-commutative)
monomial in {µg : g ∈ C}. If g ∈ Ci and h ∈ Cj , i 6= j then since gh = hgx
for some x ∈ Nj+1 we can assume that P (g) and Q(h) commutes for any
two polynomials P (X) and Q(X). Any monomial M in µg’s can therefore
be assumed to be in the form µ1 . . . µn where µi is either 1 or hg − g for
some g ∈ Ci.

For any i if g is trivial on Ωi then µgVi = 0. Since each orbit Ωi is of
cardinality at most c there exists a constant c′ that depends only on c such
that for any orbit Ωi there are at most c′ distinct µg’s that are non-zero on
Vi. Consider a monomial M = µ1 . . . µn of degree n > c′. For any Vi there is
a µk such that µkVi = 0. Therefore since V is the direct sum V1 ⊕ . . .⊕ Vm,
MV = 0. As a consequence to obtain Uj it is sufficient to take the closure
of Uj+1 with respect to monomials in {µg|g ∈ C} of total degree bounded
by c′. In FL we can enumerate all monomials over C of degree bounded by
c′. Hence Uj is the obtained by taking the span of MUj+1 where M is a
monomial in C of degree at most c. A basis of for Uj can then be computed
in FLModpL using Proposition 5.21.

T is abelian The vector space Uj+1 is closed action of Nj+1. Therefore as
far as computing the closure of Uj+1 is concerned we assume that the group
algebra of the quotient group Nj/Nj+1 is acting on V . In this case the group
algebra of Nj/Nj+1 is abelian. Therefore elements g and h can be thought
of as commuting linear transformations over V . Also there is a prime q < c
such that gq − 1 = 0. In FLModpL we can find a set T of elements in the
group algebra Nj/Nj+1 such that the Uj is the span of {τUj+1 : τ ∈ T }.

We now give the FLModpL algorithm for computing the strong generator
set of Ns rel Ns+1 problem. Let W denote the subspace of {vx|x ∈ Ns}.
It follows from Proposition 5.23 that a basis B for the space W . We can
keep track of the entire permutations: Whenever we add the vector gvx into
B we add the corresponding permutation g−1xg into B. We thus have a
subset B of Ns such that {vx|x ∈ B} spans W . Let B = {x1, . . . , xn} then,

53



for 1 ≤ i ≤ n, define the set Ci = {xai : 1 ≤ a ≤ p − 1}. The set ∪ni=1Ci
is the strong generator set of Ns rel Ns+1. Clearly C can be computed in
FLModpL.

Finally, we describe how to compute Sift(x) for any x ∈ Ns with re-
spect to the above mentioned strong generator set. In logspace compute
the vector vx ∈ V corresponding to the permutation x. Using Proposi-
tion 5.21 compute ai ∈ Fp such that vx =

∑
aivxi . The sift of x is given

by Sift(x) = x
∏r
i=1 x

−ai
i . This completes the abelian case of our induction

step.
We have thus shown that the strong generator set of G rel Ns+1 can be

computed inductively starting from s = 0. Since the locally residual series
G = N0 D . . . D Nl is of length l bounded by a constant in c we have the
following theorem.

Theorem 5.24. Let G be a permutation group with orbits of size bounded
by a constant c. Given a generator set A for G, we can compute the strong
generator set for G with respect to the locally residual series in the ModkL-
hierarchy. The constant k is the product of all primes less than c and the
level of the hierarchy depends only on c.

5.5 The target reduction procedure

Our goal is to show that PWSc is in the ModkL-hierarchy. The heart of
the algorithm is the target reduction procedure: Given a instance (G,Ω,∆)
of PWSc, we compute a subgroup G′ of G containing G (∆) such that for
each G-orbit Ω′ that contains a point of ∆, G′|Ω′ is a proper subgroup of
G|Ω′ . In this section we show that target reduction can be performed in the
ModkL-hierarchy.

Let Ω1, . . . ,Ωm be the set of G-orbits. We fix some terminologies and
conventions local to this section. Points in ∆ will be called target points.
Target orbits are G-orbits that contain target points, i.e. orbits Ωi such that
Ωi ∩∆ 6= ∅.

Firstly, if Σ ⊆ ∆ then G (Σ) ≥ G (∆). Let Σ be the subset of ∆ that
contains exactly one target point from each target orbit. Any target orbit
will continue to be a target orbit even if we replace ∆ by the subset Σ,
i.e. if G′ be the group obtained by performing target reduction on (G,Ω,Σ)
then G′ ≥ G (∆) and G′|Ω′ is a proper subgroup of G|Ω′ for all target orbit
Ω′. Therefore as far as target reduction is concerned, we can assume that
the instance (G,Ω,∆) is such that each G-orbit contains at most one target
point.

54



We make an additional assumption that G acts primitively on each target
orbit which we justify now. Consider a structure forest F = {T1, . . . , Tm} of
G where Ti is the structure tree of the transitive action of G on Ωi. Let Ω∗

denote the vertices of F . We identify the set Ω with the set of leaf nodes
of F . Recall from Section 3.4 that G’s action on Ω can be extended to Ω∗

such that given the action of an element g ∈ G on Ω∗, we can recover its
action on Ω. Furthermore, all the G-orbits of Ω∗ are of size bounded by c.
In FL we can compute the structure forest F of G by separately computing
the structure tree Ti for each 1 ≤ i ≤ m. Furthermore for a given g in G, in
FL we can compute the action of g on the Ω∗.

Let Ω∗i ⊆ Ω∗, 1 ≤ i ≤ m, denote the children of the root of Ti. Then
for every 1 ≤ i ≤ m, the set Ω∗i is an orbit and G acts primitively on it
(Theorem 3.12). Let ∆∗ be the ancestors of elements of ∆ in ∪mi=1Ω∗i .

Proposition 5.25. The group G (∆∗) contains G (∆) and for any subgroup
H of G, if H|Ω∗i < G|Ω∗i then H|Ωi < G|Ωi.

Proof. Consider any δ∗ ∈ ∆∗. There is a δ ∈ ∆ such that δ∗ is the ancestor
of δ in the structure forest of G. Let Σ be the leaves of the structure tree
rooted at δ∗ then Σ is a G-block that contains δ (Section 3.4). Thus for
a g ∈ G if δg = δ then Σg = Σ and hence δ∗g = δ∗. This proves that
G (∆∗) ≥ G (∆).

Consider any subgroup H of G. Recall that the action of G on the
structure tree Ti depends only on the action of G|Ωi on Ωi. Hence if H|Ωi =
G|Ωi then H|Ω∗i = G|Ω∗i .

Proposition 5.25 proves that target reduction for the instance (G,Ω,∆)
can be achieved by performing target reduction on (G,Ω∗,∆∗). Summarising
the above discussions, for target reduction we assume that the given instance
(G,Ω,∆) has the following properties.

1. All G-orbits are of size bounded by a constant c.

2. G acts primitively on each target orbit.

3. Each target orbit contains a unique target point.

In this section we use the following notation: X denotes the set of all i
such that Ωi is a target orbit. For each index i ∈ X, δi denotes the unique
target point in Ωi. Identifying the indices of X, the corresponding target
orbits and the target points leads to no confusion. Hence for a subset of Z
of X, by target orbits of Z we mean the collection {Ωi|i ∈ Z}. Similarly by
target points of Z we mean the set {δi|i ∈ Z}.

55



Overview of the target reduction step

First we use Theorem 5.24 to compute the strong generator set of G with
respect to the locally residual series G = N0D . . .DNl = {1}. In fact in the
ModkL-hierarchy we obtain the following.

1. For each i a residual series Gi = Ri,0 D . . . D Ri,l = 1 such that,
Ri,s+1 = ResTs (Ri,s).

2. The product group Rs =
∏
iRi,s and

3. The groups Ns = G ∩Rs.

Consider any target orbit Ωi. Recall that Ns|Ωi = Ri,s (Proposition 5.17)
and hence Gi = N0|Ωi D . . .D Nl|Ωi = {1} is a residual series for Gi. Since
Gi acts primitively on Ωi, the last nontrivial group in this series is Soc (Gi)
(Lemma 5.15). Let Xs denote the set of all i such that Ns|Ωi = Soc (Gi)
and Ns+1|Ωi = {1}. We have ∪Xs = X.

The target reduction is done inductively in l stages where in the sth stage
we handle the target orbits in Xs. Inductively we compute the generator
sets of the sequence of groups G = H0 ≥ . . . ≥ Hl+1 such that for all s,
Hs ≥ G (∆) and Hs|Ωi is a proper subgroup of G|Ωi for each i in ∪s−1

j=0Xs.
In fact the group Hs that we compute in the sth stage will contain Ns. Since
X = ∪lj=0Xs, the group Hl+1 is the required group G′.

To begin with H0 = G. Inductively assume that we have computed a
generator set As of Hs. To compute Hs+1 we first identify a subset Ys ⊆ Xs

of critical indices. A subset Y of X is said to be critical if it has the following
properties:

1. Let N be the subgroup of Ns that fixes all the target points in Y then
N |Ωi < Ns|Ωi for all i ∈ Xs.

2. For any x ∈ G there is a y ∈ Ns such that x∗ = xy fixes all the points
of Y .

Proposition 5.26. Let H be the subgroup of Hs that fixes all the target
points in a critical subset Y of Xs then Hs ≥ H ≥ G (∆) and for all i ∈ Xs

H|Ωi < Gi.

Proof. Let ∆′ be the subset of ∆ containing all the target points of Y . By
induction hypothesis Hs ≥ G (∆) and hence H = Hs (∆′) ≥ G (∆). The
group Hs ∩Rs = Ns we have H ∩Rs = N . Since N |Ωi < Ri,s for all i ∈ Xs,
H ∩Rs|Ωi < Ri,s. Therefore by Proposition 5.17 we have H|Ωi < Gi for all
i ∈ Xs.

56



Recall that our goal is to compute a subgroup Hs+1 of Hs that contains
G (∆) and is strictly smaller that Gi on Ωi for each i ∈ Xs. By Proposi-
tion 5.26 it is sufficient to choose Hs+1 to be the subgroup of Hs that fixes
all the target points in Y for some critical subset Y of Xs. In the sth stage
of the algorithm we identify a critical subset Ys which is effective, i.e. given
any x ∈ G, in FLModkL we can compute a y ∈ Ns such that x∗ = xy fixes
all the points in Ys. The subgroup Hs+1 is the subgroup of Hs that fixes all
the target points of Ys.

We now show how a generator set for Hs+1 can be computed. Let As
be the a generator set for Hs. Since Ys is critical for each x ∈ As there is a
y ∈ Ns such that x∗ = xy fixes all the target points in Ys. Let A∗s denote
the set {x∗|x ∈ As}.

Proposition 5.27. Let N be the subgroup of Ns that fixes all the target
points of Ys and let B be a generator set for N . Then A∗s ∪B generates the
subgroup Hs+1.

Proof. First, we claim that A∗xNs generates Hs. Consider any g ∈ Hs. Since
As generates Hs, for some integer t ≥ 0 there exists t elements x1, . . . , xt in
As such that g is the product

∏t
i=1 xi. For any x ∈ As there is an element

y ∈ Ns such that x∗ = xy is contained in A∗s, Therefore we have for 1 ≤ i ≤ t
elements x∗i ∈ A∗s and yi ∈ Ns such that g = x∗1y1 . . . x

∗
t yt. This proves our

claim.
The group Ns is a normal subgroup of G and hence is also a normal

subgroup of Hs. Therefore every element g ∈ Hs can be written as g =
g1g2 where g1 is contained in the group generated by A∗s and g2 ∈ Ns.
Furthermore, since every element of A∗x fixes all the target points of Ys,
so does g1. As a consequence any element of Hs+1, the subgroup of Hs

that fixes the target points of Ys, is of the form uv where u is in the group
generated by A∗s and v ∈ N . Hence A∗sN generates the group Hs+1 and if
B is a generator set of N , A∗s ∪B generates Hs+1.

To complete the inductive procedure for target reduction it is thus suf-
ficient to perform the following subtasks.

1. Compute a critical subset Ys ⊆ Xs.

2. Given x ∈ G compute a y ∈ Ns such that xy fixes each of the target
points of Ys.

3. Compute a generator set of the subgroup N of Ns that fixes each of
the target points of Ys.

57



Depending on whether Ns/Ns+1 is abelian or not we have two case.
When Ns/Ns+1 is abelian then Ns/Ns+1 is Fp-semisimple for some prime
p ≤ c. In this case we show that the steps 1, 2 and 3 can be done in
FLModpL. On the other hand when Ns/Ns+1 is nonabelian then the steps 1,
2 and 3 can be done in FL. We explain these two case in the next two
subsections.

5.5.1 Computing the critical orbits: abelian case

In this case the quotient group Ns/Ns+1 is Fp-semisimple for some prime
p ≤ c. Let Ω1, . . . ,Ωm be the G-orbits and let Gi = G|Ωi . Then by the
O’Nan-Scott theorem Soc (Gi) is regular on Ωi, i.e. Soc (Gi) is transitive on
Ωi and for any δ ∈ Ωi, the subgroup of Soc (Gi) that fixes δ is the trivial
group. As a consequence we have the following property.

Proposition 5.28. Let Y be any subset of Xs and let K be the subgroup of
Ns that fixes the target points of Y . Then we have.

1. K EG.

2. For any i in Xs either K|Ωi is trivial or is Soc (Gi).

3. For any i ∈ Xs such that K|Ωi is nontrivial and for any two elements

δ and δ′ of Ωi, there is an element h of K such that δh = δ′.

Proof. The group K is a subgroup of Ns and hence for all i ∈ Xs, K|Ωi is
a subgroup of Soc (Gi). Moreover K fixes the target point δi of Ωi for each
i ∈ Y . Therefore the projection of K onto Ωi is the subgroup of Soc (Gi) that
fixes δi. However since Soc (Gi) is regular on Ωi, K|Ωi is trivial for all i ∈ Y .
Thus K is the intersection of the groups Ns and

∏
i 6∈Y Ri,s. The group G

normalises the group
∏
i 6∈Y Ri,s. Also NsEG. Hence their intersection K is

a normal subgroup of G. This proves part 1.
Consider an i ∈ Xs. As argued before since K ≤ Ns, K|Ωi is a subgroup

of Soc (Gi). Suppose that K|Ωi is nontrivial. Then since K is a normal sub-
group of G and since G|Ωi = Gi, it follows that K|Ωi is a normal subgroup
of Gi. However by the O’Nan-Scott theorem Soc (Gi) is the unique minimal
normal subgroup of Gi. Therefore K|Ωi = Soc (Gi) which proves part 2.

Finally consider an i in Xs such that K|Ωi is nontrivial. The group
Soc (Gi) is regular on Ωi (O’Nan-Scott theorem). Hence for any two elements
δ and δ′ of Ωi we have an element g ∈ Soc (Gi) such that δg = δ′. Since
K|Ωi = Soc (Gi), part 3 then follows as there is an element g∗ ∈ K such
that g∗|Ωi = g.

58



We fix the following notation for this subsection. Recall that Ns is the
intersection of the product group Rs =

∏m
i=1Ri,s and G (Subsection 5.4.1).

The quotient groups Ri,s/Ri,s+1 is Fp-semisimple and hence is a vector space
Vi over Fp. Let V be the direct sum ⊕mi=1Vi then Rs/Rs+1 is isomorphic to
V . We identify the vector space V with the quotient group Rs/Rs+1 under
this isomorphism, i.e. for every element x ∈ Rs we associate isomorphic
image vx of x in V . Clearly for any x and y in Rs/Rs+1 the vector vx+y

is vx + vy and for any integer a vxa = ãvx, where ã ∈ Fp is the element
a (mod p).

Proposition 5.29. Given any element x ∈ Rs, in FL we can compute the
vector vx.

Proof. Let wi denote the projection of vx onto the vector space Vi. Since
the vector space V is the direct sum of the subspaces Vi, vx =

∑m
i=1 wi.

The order of the group Ri,s is at most c! as the size of the orbit Ωi is less
than c. Hence in FL we can compute the projection wi and thus compute
vx.

The quotient group Ns/Ns+1 is a subgroup of the Rs/Rs+1 (more pre-
cisely Ns/Ns+1 ↪→ Rs/Rs+1) and hence is a subspace U of V .

Proposition 5.30. Given the strong generator set C of Ns, in FLModpL

a subset B = {x1, . . . , xr} of C can be computed such that the vectors
vx1 , . . . ,vxr forms a basis of U .

Proof. The subset C = {vx|x ∈ C} of V spans U . Using Proposition 5.21 in
FLModpL compute a subset B of C that forms a basis of U . For each v ∈ B
pick a permutation x ∈ C, say the lexicographically least such that vx = v
and form the subset B of C. Clearly B can be computed in FLModpL.

Our goals are (1) to compute a critical subset Ys of Xs, (2) compute a
generator of the subgroup N of Ns that fixes all the points of Ys and (3)
give a x ∈ G compute a y ∈ Ns such that x∗ = xy fixes all the target points
of Ys. By Proposition 5.28 it follows that the subgroup K of Ns that fixes
some of the target points of Xs is such that for all i either K|Ωi = 1 or
K|Ωi = Soc (Gi). The subset Ys of Xs that we choose will be a minimal
subset of target points such that the subgroup of Ns that fixes the points of
Ys will be trivial on all the target orbits of Xs. First we prove the following
proposition that will be used to identify Ys and later on to compute the set
N .

59



Proposition 5.31. Given any subset Y of Xs there is a FLModpL algorithm
to compute the generator set of the subgroup K of Ns that fixes all the target
points of Y .

Proof. Since Ns+1 is trivial on all the target orbits it follows that K contains
Ns+1. Let W denote the vector space associated with the quotient group
K/Ns+1. From Proposition 5.28 it follows that K is trivial on all the orbits
of Y . Therefore K is the intersection of the groups Ns and

∏
j 6∈Y Ri,s. Hence

W is the subspace U ∩ ⊕i 6∈YsVi.
In FLModpL we first compute the set B = {x1, . . . , xr} such that B =

{vx1 , . . . ,vxr} is a basis for U (Proposition 5.30). Consider the projection
of U on to the space ⊕i∈YsVi. Then W is the kernel of this projection. Let A
be the matrix associated to this projection with respect to the basis B. The
subspace W consists of all vectors

∑
aivxi which are solutions of the linear

equation Ax = 0. Using Theorem 2.5 we can compute a basis u1, . . . ,ut
for W . In fact the algorithm outputs the elements aij ∈ Fp such that
ui =

∑r
j=1 aijvxj . Let gi =

∏r
j=1 x

aij
j then clearly the set D = {g1, . . . , gt}

generates the quotient group K/Ns+1. As part of the strong generator set
of G we have already computed a strong generator set C ′ of Ns+1. The set
C ′ ∪D gives a generator set for K.

We now present the FLModpL algorithm (Algorithm 6) for computing Ys.

Y ← ∅.
foreach i ∈ Xs do

Let Ki be the subgroup of Ns that fixes target points of Y .
1 if K is nontrivial on Ωi then Y ← Y ∪ {i} ;

end
Return the set Ys = Y .

Algorithm 6: Computing Ys

For the step 1 in FLModpL we first compute the generator set Di of
Ki (Proposition 5.31). The group Ki is trivial on i if and only if all the
elements of Di is trivial on Ωi. Thus step 1 can be performed by making
a query to a ModpL oracle and hence Algorithm 6 is a FLModpL procedure.
Having computed Ys using Proposition 5.31 we compute in FLModpL the
generator set of the subgroup N of Ns that fixes all the target points of
Ys. To complete the abelian case we show that for each x ∈ G, x∗ can be
computed in FLModkL.

Proposition 5.32. Given any x ∈ G there is a FLModpL algorithm to com-
pute an element y of Ns such that xy fixes all the points of Ys.

60



Proof. Without loss of generality assume that Ys = {1, . . . , t} for some in-
teger t. Let δi denote the target point in Ωi. Let K0 = Ns and for 1 ≤ i ≤ t
let Ki denote the subgroup of Ns that fixes the target points δ1, . . . , δi.

First, we prove by induction that there are elements hi ∈ Ki, 0 ≤ i < t,
such that xh0 . . . hi fixes every element of the set {δ1, . . . , δi+1}. Let x map
δ1 to δ′1. Since K0|Ω1

is transitive on Ω1 there is an element h0 ∈ K0

that maps δ′1 to δ1. Hence xh0 fixes δ1. Inductively assume that there
exists elements hj , 0 ≤ j < i such that xh0 . . . , hi−1 fixes the target points
δ1, . . . , δi. Let xh0 . . . hi−1 map δi+1 to δ′i+1. Since Ki is nontrivial on Ωi+1,
it follows from part 3 of Proposition 5.28 that there is an element h ∈ Ki

that maps δ′i+1 back to δi+1. Let hi = h. The group Ki is trivial on all
the G-orbits Ω1, . . . ,Ωi and therefore xh1 . . . hi fixes all the points in the set
{δ1, . . . , δi+1}. The element y = h0 . . . ht−1 ∈ Ns is such that xy fixes all the
target points of Ys. We now give the FLModpL algorithm for computing y.

Let x map δi to νi. We want to compute an element y ∈ Ns that maps
νi to δi for all i ∈ Ys. To this end consider the vector space V ′ = ⊕i∈YsVi
and let U ′ be the projection of U onto V ′. Recall that the groups Ri,s and
Ns+1|Ωi are trivial for all i ∈ Ys. Therefore the vector spaces V ′ and U ′ are
isomorphic to the groups Rs and Ns restricted to the target orbits of Ys.
For an element x ∈ Rs let ux be the image of x in V ′ under this restriction.
In fact ux is the projection of vx onto V ′. Analogues to Proposition 5.30,
using Proposition 5.21 we compute in FLModpL a subset B′ = {x1, . . . , xt} of
B such that B′ = {ux1 , . . . ,uxt} forms a basis for U ′. First we show that uy
can be computed in FL and then we recover the permutation y in FLModpL.

Consider an i ∈ Ys. Since Ri,s is a constant sized transitive permutation
group on Ωi, in FLModpL we can compute an element yi ∈ Ri,s that maps νi
back to δi. The group Ns|Ωi = Soc (Gi) and by the O’Nan-Scott theorem

Soc (Gi) has a regular action on Ωi. The element yy−1
i ∈ Rs fixes the point

νi and therefore restricted to Ωi is trivial. As a result if wi denotes the
projection of uy onto Vi then wi = vyi . Since Ri,s is a group of order
bounded by c!, in FL we can compute the vector wi. The vector uy is given
by
∑

i∈Ys wi which can also be computed in FL.
To complete the algorithm we need to recover y from the vector uy.

Using Proposition 5.21 we compute, in FLModpL, elements a1, . . . , at ∈ Fp
such that uy =

∑t
i=1 aiuxi . The permutation y =

∏t
i=1 x

ai
i is the required

element of Ns.

61



5.5.2 Computing the critical orbits: nonabelian case

Consider any i ∈ Xs. By O’Nan-Scott theorem Soc (Gi) is either K (type 2)
for some minimal normal subgroup K of Gi or is of the form K1×K2 (type 3)
where K1 and K2 are the only minimal normal subgroups of Gi. For each
i ∈ Xs, by a socle part associated to i we mean a minimal normal subgroup
of Gi. For a T -semisimple group L = T1× . . .×Tr by a simple part we mean
one of the subgroup Ti.

The quotient group Ns/Ns+1 is a subgroup of the Ts-semisimple group
Rs/Rs+1. Hence by Scott’s Lemma (Lemma 3.6), Ns/Ns+1 is a product of
diagonals of simple parts of Rs/Rs+1. Consider two simple parts T ′ and T ′′

of Rs/Rs+1. As before we say that T ′ and T ′′ are linked if in Ns/Ns+1, T ′

and T ′′ are in the same diagonal component. We now extend the “linking”
relation to socle parts. Any socle part K is the product of certain subset of
simple parts of Rs/Rs+1. We say that the socle parts K ′ and K ′′ are linked
if K ′ = . . .×T ′× . . . and K ′′ = . . .×T ′′× . . . such that T ′ and T ′′ are linked.
For socle parts K ′ and K ′′ we prove that either they are fully linked or are
unlinked.

Proposition 5.33. Let K ′ = T ′1 × . . .× T ′u and K ′′ = T ′′1 × . . .× T ′′v be two
socle parts. If K ′ and K ′′ are linked then u = v and there is a permutation
π ∈ Su such that T ′i is linked to T ′′iπ .

Proof. Let K ′ and K ′′ be socle parts corresponding to orbits Ω′ and Ω′′. Let
us assume without loss of generality that T ′1 is linked to T ′′1 . Since K ′ is the
minimal subgroup of G|Ω′ , for any i there is an element g ∈ G such that
g−1T ′1g = T ′i (Lemma 5.7). The element g maps via conjugation T ′′1 to some
T ′′i . Thus for any simple part T ′i in K ′ there is a simple part T ′′i in K ′′ such
that T ′i and T ′′i are linked. However no two simple parts of K ′ are linked.
Each simple part of K ′ therefore, is linked to distinct simple part of K ′′. By
interchanging the role of K ′ and K ′′ we can prove the converse. As a result,
we have u = v and π ∈ Su is the permutation that maps i to j if T ′i is linked
to T ′′j .

Recall that for target reduction our goal is to (1) compute the set Ys of
critical orbits, (2) compute a generator set of subgroup N of Ns that fixes
all the points of Ys and (3) for each x ∈ G an element y ∈ Ns such that
x∗ = xy is trivial on all the target points of Ys. We now show that each of
these three tasks can be achieved by an FL algorithm.

62



Computing Ys

Let K be the collection of socle parts of orbits of Xs. To construct critical
subset Ys of Xs consider the graph G = (K, E) where the edge set E is
partitioned into the set of red edges R and the set of blue edges B. The
red edges R consists of all unordered pairs {K1,K2} where K1 and K2 are
linked. On the other hand the blue edges consists of all unordered pairs
{K1,K2} such that K1 and K2 are distinct socle parts of the same G-orbit.
We have the following proposition about the structure of the graph G.

Proposition 5.34. The red subgraph, i.e. Gred = (K,R), consists of dis-
connected cliques and any blue edge is between two disconnected red cliques.

Proof. The “linking” relation is an equivalence relation and hence the red
subgraph consists of disconnected red cliques. Any blue edge is between two
socle parts of the same G-orbit. Hence they cannot be linked. Therefore blue
edges are always between two disconnected red cliques in the red subgraph.

In logspace we compute the set C of red cliques in the red subgraph Gred.
We partition the set C into subsets C′ and C′′, where a red clique C is put in
C′ if C contains an element K = Soc (Gi) for some i ∈ Xs. The remaining
cliques are put in C′′. We now construct the subset of critical orbits Ys as
the union of Y ′s and Y ′′s .

The set Y ′s consists of one index i per clique C ∈ C′ such that K =
Soc (Gi) ∈ C. Shrink all the red cliques in G and delete all vertices (and
blue edges incident on them) that corresponds to cliques in C′. Call the new
graph G′. In G′, compute the lexicographically first spanning forest of blue
edges. Let B′ be the blue edges in the spanning forest. Recall that each
e ∈ B′ corresponds to the orbit Ωi where Soc (Gi) = K × K ′. The subset
Y ′′s of the critical subset X ′′s consist of such indices i corresponding to edges
in B′. We prove the following proposition

Proposition 5.35. The set Ys = Y ′s ∪ Y ′′s can be computed in logspace. Let
N be the subgroup of Ns that fixes all the target points of Ys then N |Ωi ≤ Ri,s
for all i ∈ Xs.

Proof. The sets Y ′s and Y ′′s can be computed in logspace as this involves
reachability in undirected graphs (Lemma 2.1).

Let ∆′ be the subset containing all the target points of Ys and let
N = Ns (∆′). Depending on whether Soc (Gi) has one or two socle parts we
have the following two cases.

63



Case 1: The socle Soc (Gi) is itself a socle part K. Consider the red clique
C ∈ C′ that contains K. By the construction of Y ′s there is a j ∈ Y ′s such that
Soc (Gj) = K ′ ∈ C. Since K ′ and K are linked, any h ∈ Ns when restricted
to Ωi ∪ Ωj is of the form 〈φ(h′), h′〉, h′ ∈ K ′, for some isomorphism φ from
K ′ to K. Therefore N when restricted to Ωi is φ(K ′δj ). By O’Nan-Scott’s

theorem K ′ is transitive and hence K ′δj is a proper subgroup of K ′. Thus
N restricted to Ωi is also a proper subgroup of K = Ri,s.

Case 2: The socle Soc (Gi) is of the form K ×K ′. Then there is blue edge
e = {K,K ′} in the graph G. Firstly if e is one of the edges in the maximal
spanning forest B′ then N fixes the target point corresponding to e. The
group N |Ωi is a diagonal group Diag (K ×K ′) (O’Nan-Scott theorem) and
hence a proper subset of K ×K ′. Thus we have disposed the case when e is
an edge of the spanning forest B′.

We now handle the case when e is not an edge of the spanning forest
B′. Suppose that the edge e = {K,K ′} connects the distinct red cliques
C1 and C2 with K ∈ C1 and K ′ ∈ C2. If C1 (or C2) is a clique in C′ then
there is a j ∈ Y ′s such that Soc (Gj) = Kj ∈ C1 (or C2). By an argument
similar to the Case 1 it follows that N restricted to K is a strict subgroup
K ′′ isomorphic to the subgroup of Kj that fixes δj . Hence N restricted to
Ωi is K ′′ ×K ′ which is a strict subgroup of Ri,s = K ×K ′.

Suppose that both C1 and C2 are cliques of C′′. Then since B′ forms a
maximal spanning forest, adding edge e to B′ gives a cycle e1, . . . , er, e (see
the figure below).

•K2
K′r−1•

er Kr

K′r
•

e1

K1

K′1

K
•
K′

e

Let Ωjt be the orbit that corresponds to the edge et and let Soc (Gjt) =
Kt ×K ′t. The group N fixes all the points δjt ∈ Ωjt . By case 3 of O’Nan-
Scott theorem it follows that N |Ωjt is the diagonal group Diag (Kt ×K ′t).
Note that K1 and K ′t are linked to K and K ′ respectively in Ns. Hence the
group N restricted to Ωi is a diagonal group Diag (K ×K ′) which is a strict
subgroup of Rs,t = K ×K ′.

Computing x∗

Given an x ∈ G we give an FL algorithm to compute a y ∈ Ns such that
x∗ = xy fixes all target points in Ys. For any i ∈ Ys let the target point δi

64



of Ωi be mapped to νi. Then we want to find a y in Ns that maps νi back
to δi.

Proposition 5.36. Given an i ∈ Xs. There is an FL algorithm to compute
a subset Di ⊆ Ns elements such that (1) the projection of Di to Soc (Gi) is
one-to-one and (2) for any socle part K ′ of Soc (Gj), j ∈ Xs, Di projected
to K ′ is trivial if K ′ is not linked to any of the socle parts of Soc (Gi).

Proof. Let Rs/Rs+1 = T1× . . .×Tu where each Ti is isomorphic to T . Since
Ns/Ns+1 ↪→ Rs/Rs+1 there exists a partition I = {I1, . . . , It} of indices

1, . . . , u such that Ns/Ns+1 is the product
∏t
k=1 Diag

(∏
j∈Ik Tj

)
. We have

computed the strong generator set C of Ns rel Ns+1 as part of the SGS
of G. Recall that the strong generator set C of Ns rel Ns+1 consists of
subset C1, . . . , Ct where the subset Ck corresponds to the diagonal group

Diag
(∏

j∈Ik Tj

)
, i.e. the projection of Ck on Tj is the group Tj if j ∈ Bi

and 1 otherwise.
Let x1, . . . , xr be the elements of C whose action on Ωi is nontrivial.

Then for any other socle part Kj that is not linked to any of the socle parts
of Soc (Gi), xi’s are trivial on Kj . Furthermore if zi denotes the projection
of xi onto Soc (Gi), then z1, . . . , zr generates Soc (Gi). For each element
z ∈ K we express z as a product z = zi1 . . . zik . Include into Di the element
xz = xi1 . . . xik . Since Soc (Gi) is a constant sized group and each xi’s are
elements of the group G with constant sized orbits, Di can be computed in
FL.

Remark 5.37. Consider the SGS C = ∪tk=1Ck of Ns rel Ns+1 where Ck

corresponds to the diagonal component Diag
(∏

j∈Ik Tj

)
. For a j ∈ Xs the

elements of Ck is nontrivial on Ωj if and only if a Soc (Gj) = . . .× Tr × . . .
and r ∈ Ik. It follows from the proof of Proposition 5.36 that we can
ensure Ck ⊆ Dj for any j such that Ck is nontrivial on Ωj . Therefore the
set ∪i∈XsDi ∪ C ′ is a generator set for Ns rel Ns+1 where C ′ denotes the
elements of C that are trivial on all the target orbits.

We now prove that given any x ∈ G we can compute in FL an element
y ∈ Ns such that x∗ = xy fixes all the target points of Ys. Intuitively we
want to choose an element y in Ns that “negates” the effect of x on δi for
all i ∈ Ys

First we handle the target points in Y ′s . Each i ∈ Y ′s can be handled
independent of the other target points in Ys, i.e. we can compute elements

65



yi such that xyi fixes δi and for all j in Ys \ {i}, yi|Ωj is 1. That such

an element exists follows from the fact that (1) Soc (Gi) is transitive and
(2) none of the socle parts of Soc (Gj) is linked to Ki = Soc (Gi) for all
j ∈ Ys \ {i}. We compute yi in FL using Proposition 5.36.

The target points in Y ′′s however cannot be handles independently, i.e.
the choice of a yi for some i ∈ Y ′′s will have a nontrivial action on some of
the other target orbits in j ∈ Y ′′s as illustrated below. Recall that for each
i ∈ Y ′s there is an edge ei ∈ B′. The difficulty arises for i and j in Y ′′s for
which the edges ei and ej share a common vertex in G′ (see figure below).

• ei

ΩiK′i Ki
•

ej

ΩjKj K′j
•

In such a case Soc (Gi) = Ki × K ′i and Soc (Gj) = Kj × K ′j and Ki

and Kj are linked. Thus any nontrivial element chosen from Ki will have
a nontrivial action on Ωj . Any element yj that we choose for the orbit
Ωj has to negate this “propagated” effect. The main idea therefore is to
systematically choose elements ye for each edge in B′ keeping in view this
propagated effect.

Recall that we have computed a lexicographically least maximal span-
ning forest F of G′ with edge set B′ ⊆ B. Each tree T in the forest F can be
considered as a rooted tree with root at the lexicographically least vertex of
T . Thus each edge in B acquires a direction: the tail at the vertex closer to
the root (see figure below). This gives a partial order on B′: edges e < e′ if
e and e′ belong to the same tree and the unique path from the root to the
tail of e′ contains the edge e.

• e′ //•

• //• e //•

??

  

Since the vertices of G′ corresponds to red-cliques in G which in turn
corresponds to linked socle parts the following proposition is direct.

Proposition 5.38. Let e be any edge with tail at K1 and head at K2. Fix
an edge e′ ≯ e and let Ωi be the orbit corresponding to e′. Then the socle
part K2 is not linked to any of the socle parts of Soc (Gi).

Consider any edge e ∈ B′ and let Te be rooted tree in the forest B′ con-
taining e. We give an FL algorithm (Algorithm 7) to compute a permutation

66



ye ∈ Ns that is trivial on all orbits corresponding to edges e′ ≯ e and for
the unique path e1, . . . , et from the root of Te to the tail of e, negates the
action of xye1 . . . yet on the target point corresponding to e. In fact ye will
be trivial on all orbits other than those that corresponds to e and edges
going out of the head of e (indicated by a double arrow in the figure).

• //

• e1
//• //• et

//• e
//•

;C

+3

�#

• //

• //

The main idea behind algorithm is that once the path e1, . . . , et is com-
puted (which can be done in FL using Reingold’s algorithm [57]), the prop-
agated effect of yei ’s on the orbit associated to e can be kept track of using
constant amount of space. This is because for each i since ei < ej the per-
mutation yei is trivial on all the orbits associated to ej for j > i+1. Let e be
the directed edge (K1,K2) then since K2 is transitive on the orbit associated
to e, the permutation ye will be chosen such that ye does not effect any of
the orbits associated to edges e′ ≯ e. Proposition 5.38 guarantees that such
a ye exists.

Proposition 5.39. Algorithm 7 is a FL algorithm.

Proof. The algorithm can be seen as the composition of two stages (1) com-
puting the paths e1, . . . , et (step 1 of Algorithm 7) and (2) computing ye
(loop 2 of Algorithm 7). Computing the path involves applying Reingold’s
s-t connectivity algorithm [57] (also Lemma 2.1) repeatedly and hence is
in FL. The permutation yi (step 3 of Algorithm 7) is computed by first
computing the set Di (using Proposition 5.36). Recall that Di projects onto
Soc (Gi) = K1 × K2 and K2 is transitive (O’Nan-Scott). Hence in FL by
examining all the #Soc (Gi) elements of Di we can find a desired yi. All
these can be achieved by logspace bounded computations.

Let e1, . . . , er denote a topological sorting of edges in B′ and let y′′ =
ye1 . . . yer then y′′ is trivial on all orbits of Y ′s and xy′′ fixes all the target
points in Y ′′s . Recall that we have already computed a y′ such that y′ is
trivial on all the orbits in Y ′′s and xy′ fixes all points of Y ′s . Let x∗ = xy′y′′.

Proposition 5.40. The element x∗ ∈ G fixes all the points in Ys.

Proof. We prove by induction. Let z = xy′ then as argued before z fixes
all the target points on Y ′s . Consider any topological ordering e1, . . . , er of

67



Input: The permutation x ∈ G and an edge e ∈ B′
Output: The permutation ye

1 Compute a path e1, . . . , et = e from the corresponding root of the
tree containing e to e.

Let Σi be the G-orbit associated to ei.
Let δi be the target point associated with the edge ei.
y∗ ← 1.

2 for i = 1 to t do

δ ← δxy
∗

i .
if δ = δi then yi ← 1. ;
else

Let ei be the directed edge (K1,K2) (tail at K1 and head at
K2).

3 Using Proposition 5.36 compute yi such that δyi = δi with
the additional property that yi is trivial and all socle parts
not linked to K2.

end
if i < t then y∗ = yi|Σi+1

.;

end
return yt

Algorithm 7: Computing the permutations ye.

edges in B′. Let Ωi denote the G-orbit corresponding to ei. Let 0 ≤ k ≤ r+1
be the largest index such that the permutation z fixes the target points of
∪k−1
j=1Ωj . If k = r+1 then we are through. Otherwise Algorithm 7 computes

a yek such that zyek fixes δk, the target point of Ωk. Let ek be the directed
edge (K1,K2) with the head at K2. By step 3 we have ensured that yek
projected onto Ωk is in K2. Since e1, . . . , er is a topological sort, ei ≯ ek for
every i < k. Therefore for any i < k, the socle parts of Soc (Gi) is not linked
to K2 (Proposition 5.38). Hence yi is trivial on all Ωi for 1 ≤ i < k and
z′ = zyek fixes all the target points in ∪kj=1Ωj . We now repeat the argument
with z replaced with z′ = zyek . At each stage k increase by 1 and hence
after r steps k = r + 1 are we are through.

Remark 5.41. Consider any x ∈ G and x∗ = xy where y ∈ Ns be the
permutation computed by our algorithm such that x∗ fixes all points in Ys.
Let e = (K1,K2) be a minimal edge in the < order (or in other words an
edge going out of a root node) with head at K2. Then it is straight forward
to verify that y restricted to K1 is trivial. This follows from the choice of

68



yi’s in Algorithm 7.
Given an element x ∈ G we have associated for each i ∈ Ys an element

yi such that x
∏
i∈Ys yi (note the order in which the indices of Y ′′s are taken

does matter; the corresponding edges should be topologically sorted). We
can ensure that the choice of yi’s depended only on the action of x on the
target points of Ys. In other words for two elements x1 and x2 in G and
let {yi}i∈Ys and {y′i}i∈Ys be the elements chosen. Then if δx1 = δx2 for all
target point δ of Ys, yi = y′i for all i ∈ Ys and∏

i∈Ys

yi = x∗1
−1x1 = x∗2

−1x2 =
∏
i∈Ys

y′i.

Furthermore we can assume that if x fixes all the target points of Ys then
each of the yi = 1 for all i ∈ Ys. We will make this additional assumption
which will be helpful in computing the generator set for N .

Computing N

Finally we give the FL algorithm to compute the generator set of N , the
subgroup of Ns that fixes all the target points in Ys. To this end we examine
the strong generator C of Ns rel Ns+1 which we have computed as part of
the generator set of G.

Let Rs/Rs+1 = T1 × . . . × Tu where each Ti is isomorphic to a non-
abelian simple group T . We have a partition I = {I1, . . . , It} of indices
{1, . . . , u}, such that the quotient group Ns/Ns+1 is the product of diago-

nals
∏t
k=1 Diag

(∏
j∈Ik Tj

)
. Recall that the strong generator set C of Ns

rel Ns+1 consists of subset C1, . . . , Ct where each Ck corresponds to the

diagonal group Diag
(∏

j∈Ik Tj

)
.

Without loss of generality we assume that Ys = {1, . . . , r1, r1 + 1, . . . , r}
where Y ′s = {1, . . . , r1} and Y ′′s = {r1 + 1, . . . , r}. We assume further with-
out loss of generality that the ordering r1 + 1, . . . , r of elements of Y ′′s is
compatible with the ordering of edges in the forest F , i.e. if ej is the edge
associated to j > r1 then er1+1, . . . , er2 is a topological sort of edges of F .

Using Proposition 5.36 in FL for each i ∈ Ys compute the sets Di such
that (1) the projection of Di on to Soc (Gi) is one-to-one and (2) for any
socle part K of Soc (Gj) not linked to socle parts of Soc (Gi) the projection
of Di is 1.

Recall that for each x ∈ G we gave an FL to compute x∗ = xy, y ∈ Ns

such that x∗ fixes all the target points of Ys. This we achieved by computing

69



for each i ∈ Ys an element yi ∈ Ns such that xy1 . . . yr1+r2 = x∗. Further-
more we assume that the yi’s are canonical as described in Remark 5.41.
For each i ∈ Ys let D∗i = {x∗|x ∈ Di}.

Proposition 5.42. Let A be a generator set of Ns+1 and let C ′ be the ele-
ments of C that is trivial on the target orbits of Ys. Then D∗ = (∪i∈YsD∗i )∪
C ′ ∪ A is a generator set of N , the subgroup of Ns that fixes all the target
points of Ys.

Proof. Clearly every element of D∗ is contained in N therefore N∗, the group
generated by D∗, is contained in N . We now prove the converse.

It follows from Remark 5.37 that D = (∪i∈YsDi) ∪C ′ forms a generator
set of Ns. Hence any element x ∈ N can be written as x = x1 . . . xryz where
xi ∈ Di, y is in the group generated by C ′ and z ∈ Ns+1.

For any i ∈ Y ′s notice that xi is trivial on all target orbits in Ys \ {i}.
Hence xi fixes all the target points of Ys. By Remark 5.41 it follows that
x∗i = xi ∈ D∗i . Thus to prove that x is in N∗ it is sufficient to prove that
z = xr1+1 . . . xr ∈ N∗. Let ej denote the edge corresponding to the point
j ∈ Y ′′s . Let k ≤ r+ 1 be the largest integer such that xj restricted to Ωj is
1 for all r1 < j < k. By the construction of D∗k we have x∗k ∈ D∗k such that
x∗k = xky fixes all the target points of Ys where y satisfies the properties of
Remark 5.41.

Consider the permutation z′ = x∗k
−1z = yxk+1 . . . xr. Since both z and

x∗k
−1 fixes the target points of Ys so does z′. We show that z′ is trivial on

all orbits Ωj , 1 ≤ j ≤ k. First for any 1 ≤ i < k, xj is trivial for all j > k.
Recall that if ek be the directed edge (K1,K2) with the head at K2 then
y is trivial on Ωj for all j < k and projected to Ωk, is an element of the
subgroup K2 (this follows from Remark 5.41). Therefore z′ = yxk+1 . . . xr
is trivial on Ωj for all r1 < j < k. Furthermore note that none of the socle
parts of Soc (Gj) is linked to K1 for k < j ≤ r and hence xj projected on Ωk

is also an element of K2. This proves that z′ projected to Ωk is an element
of K2. However by the O’Nan-Scott theorem K2 is regular. This is possible
if and only if z′ restricted to Ωk is 1 as z′ fixes the target point of Ωk.

We repeat this argument with z replaced with z′ and in each step k
increases by at least 1. Thus it follows that there exists element x∗j ∈ D∗j ,
r1 < j ≤ r, such that z

∏r
j=r1+1 x

∗
j is 1 on all the target orbits of Ys and

hence is of the form gh where g is in the group generated by C ′ and h is in
Ns+1. It follows that x is in the group generated by D∗.

Given x ∈ G since x∗ can be computed in FL it follows that a generator

70



set for N can be computed in FL. This completes the algorithm for target
reduction in the nonabelian case.

Theorem 5.43. Given an instance (G,Ω,∆) of PWSc subgroup G′ of G
satisfying the properties (1) G ≥ G′ ≥ G (∆) and (2) for all G-orbit Σ such
that Σ∩∆ 6= ∅, G|Σ > G′|Σ can be computed in the ModkL hierarchy where
k is the product of all primes less than c and the level of the hierarchy is a
constant that depends only on c.

5.6 Complexity of BCGIb

We now show that PWSc is in the ModkL-hierarchy. The complete algorithm
is given below (Algorithm 8). Each iteration of the loop 1 is in the ModkL-
hierarchy: step 2 uses Theorem 5.24 and step 3 uses Theorem 5.43. Since
the G-orbits are of size bounded by c, we will have to iterate through the
loop 1 at most c. log c times before each point in ∆ is a G-orbit in itself (i.e.
H is G (∆)).

Input: An instance (G,∆) of PWSc
Output: A generator set for G (∆).
H ← G.

1 repeat
2 Compute a strong generator set for H with respect to a locally

residual series.
3 Compute the generator set of H ′ such that H ≥ H ′ ≥ H (∆)

and such that H ′|Σ < H|Σ for each H-orbit Σ containing a
point of ∆.
H ← H ′

until H fixes all points in ∆;
return the generator set for H

Algorithm 8: Complete algorithm for PWSc

Using Proposition 5.4 we have the main theorem of this chapter.

Theorem 5.44. The PWSc, AUTb and BCGIb are in the ModkL-hierarchy.

5.7 Discussion

We have proved the BCGI is in the ModkL-hierarchy. In fact we proved this
by proving that PWSc is in the ModkL-hierarchy. The algorithm involved

71



two stages; computing the strong generator set and the target reduction.
Both these stages handled the abelian and non-abelian quotients separately.
It is surprising that even though the group theory is more involved the
non-abelian quotients could be handled in logspace where as the abelian
quotient required ModpL as an oracle for some appropriate prime p. Thus if
the composition series of G had only nonabelian simple groups then PWSc
for (G,Ω,∆) can be solved in logspace. In view of the hardness result of
Torán [68], we cannot improve on the complexity of handling the abelian
quotients unless ModpL is in L.

There is a gap between our upper bound for BCGI and the lower bound
that follows from Torán’s results [68]. It follows from Torán’s result that
BCGIb is hard for the lth level ModkL where b is exponential in k and l. Our
upper bound however places BCGIb is a higher lever of the ModkL-hierarchy.

72



Chapter 6

Computational Galois theory

We now move on to the next part of this thesis where we show upper bounds
on certain computational problems in Galois theory. Given a polynomial
f(X) of degree n over Q we are interested in the following three fundamental
tasks.

1. Compute the Galois group as a permutation group on the roots of
f(X),

2. Compute the order of the Galois group of f(X) or equivalently the
degree [Qf : Q] of the splitting field extension of f(X).

3. Check whether the Galois group of f(X) satisfies certain properties.

Given a polynomial f(X) over Q, in Chapter 7 we give polynomial time
algorithms for (1) checking whether the Galois group of f(X) is nilpotent
and (2) checking whether the Galois group of f(X) is in Γd. Chapter 8
deals with computing the order of the Galois group of a polynomial. We
prove certain upper bounds assuming the generalised Riemann hypothesis.
Finally in Chapter 9 we give some algorithms for computing the Galois group
of certain special polynomials.

For a polynomial f(X), the Galois group G can be seen as a permutation
group on the set of roots of f(X). Combinatorial structures like orbits and
blocks associated with the Galois group G play an important role in our
results. The Galois correspondence between blocks and subgroups on one
hand (Theorem 3.11) and subgroups and subfields on the other hand (Theo-
rem 6.1) gives us a Galois correspondence (Theorem 7.1) between subfields,
subgroups and blocks. This interplay between fields and permutation group

73



theoretic structures is crucial for our upper bounds. Apart from the permu-
tation group theory we require, for our conditional results of Chapter 8 and
9, an effective version of the Chebotarev density theorem proved assuming
the generalised Riemann hypothesis (Section 8.1).

In this chapter we give a brief description of the Galois theory and al-
gebraic number theory required for our results in Chapters 7, 8 and 9. In
Section 6.1 we describe the required Galois theory and in Section 6.3 some
algebraic number theory. In Section 6.4 we explain some fundamental al-
gorithmic results that we require in this thesis. To measure the complexity
of various algorithms we need a precise formulation of sizes of various al-
gebraic entities. This is explained in Section 6.4. Finally, in Section 6.5,
we prove some bounds that will be needed in analysing the complexity of
various algorithms in this thesis.

6.1 Galois theory

We recall some basic facts from Galois theory required for this thesis. A
detailed account is available in any standard text book on Galois theory or
Algebra for example Lang [40, Chapter VI]. By Q, R and C we mean the
field of rational, real and complex numbers respectively. The ring of integers
will be denoted by Z. For primes p, Fpr denotes the unique finite field of pr

elements.
Let K be a field. A field L is said to be a field extension of K, denoted

by L/K, if L ⊇ K. For a field extension L/K, L is a vector space over K
and its dimension, denoted by [L : K], is the degree of L/K. An extension
L/K is finite if its degree [L : K] is finite. If L/M and M/K are finite
extensions then [L : K] = [L : M ].[M : K].

Let K be any field. By K[X] we mean the ring of polynomials in X
with coefficients from K. The ring K[X] is a unique factorisation domain.
A polynomial f(X) ∈ K[X] is irreducible if it has no nontrivial factor.

For a field K the smallest positive integer n such that n.1 = 0, if it
exists, is called the characteristic of K. If no such integer exists then we
say that K is of characteristic 0. For example the fields Q, R and C are of
characteristic 0 where as the field Fpr is of characteristic p. For any field K,
the characteristic is either 0 or a prime p. If L/K is an extension then the
characteristic of L is same as the characteristic of K.

Let L/K be an extension. Then α ∈ L is algebraic over K if there is
an f(X) ∈ K[X] such that f(α) = 0. For α algebraic over K, the minimal
polynomial of α over K is the unique monic polynomial µα[K](X) of least

74



degree in K[X] for which α is a root. When K is clear from the context, we
simply write µα(X) instead of µα[K](X). Elements α, β ∈ L are conjugates
over K if they have the same minimal polynomial over K.

Let L/K be an extension and let α ∈ L then K(α) is the smallest subfield
of L containing K and α. If α is algebraic over K and if µα(X) is the minimal
polynomial of α over K then K(α) is isomorphic to K[X]/µα(X), the ring of
polynomials over K modulo µα(x). If L/K is a finite extension then by the
primitive element theorem [40, Theorem 4.6, Chapter V] there is an α ∈ L
such that L = K(α). Such an element α is called a primitive element of L.
A primitive polynomial of an extension L/K is the minimal polynomial of
some primitive element of L/K. Thus if T (X) is a primitive polynomial of
L/K then the field L is isomorphic to K[X]/T (X).

The splitting field Kf of f ∈ K[X] is the smallest extension of K con-
taining all the roots of f . An extension L/K is normal if for all irreducible
polynomials f(X) ∈ K[X], either f(X) splits completely into linear factors
or has no root in L. Any finite normal extension over K is the splitting field
of a polynomial in K[X]. Let L/K be any extension. By normal closure of
L over K we mean the smallest normal extension of K that contains L. For
a finite extension L/K, let T (X) be any primitive polynomial. The normal
closure of L over K is the splitting field over K of T (X).

An extension L/K is separable if for all irreducible polynomials f(X) ∈
K[X] there are no multiple roots in L. In particular all characteristic 0 fields
are separable and so are all finite fields. A normal and separable extension
L/K is called a Galois extension.

A field K is algebraically closed if every polynomial in K[X] splits over
K. For example the field of complex numbers C is algebraically closed. Let
K be any field. The algebraic closure of K, denoted by K, is the smallest
field containing K that is algebraically closed. For every field there is a
unique algebraic closure up to isomorphism.

An automorphism of a field L is a field isomorphism σ : L → L. The
Galois group Gal (L/K) of a field extension L/K is the subgroup of auto-
morphisms of L that leaves K fixed, i.e. for all α ∈ K, σ(α) = α. The Galois
group of a polynomial f ∈ K[X] is Gal (Kf/K). Let f(X) be a polynomial
over K of degree n. If α is a root of f(X) and σ ∈ Gal (Kf/K) then σ(α)
is also a root of f(X). Each σ ∈ Gal (Kf/K) is thus completely determined
by σ(αi), 1 ≤ i ≤ n, where the α1, . . . , αn are the roots of f . Thus the
Galois group of a polynomial f(X) can be seen as a permutation group on
the set of roots of f(X) and hence has order at most n!.

For a subgroup G of automorphisms of L, the fixed field Fix (L,G) is
the largest subfield K of L such that every element of G restricted to K

75



gives the identity automorphism. We now state the fundamental theorem
of Galois theory [40, Theorem 1.1, Chapter VI] which, given a finite Galois
extension L/K with Galois group G, gives a Galois correspondence between
subgroups of G and subfields of L containing K.

Theorem 6.1. Let L/K be a Galois extension with Galois group G. There
is a one-to-one correspondence between subfields E of L containing K and
subgroups H of G, given by E 
 Fix (L,H). The Galois group Gal (L/E)
is H and E/K is a Galois extension if and only if H is a normal subgroup
of G. If H is a normal subgroup of G and E = Fix (L,H) then Gal (E/K)
is the quotient group G/H.

6.2 Finite Fields

A finite field is a field of finite cardinality. An example for a finite field
is Fp = Z/pZ, the field of integers modulo a prime p with addition and
multiplication defined modulo p. For any prime p and an integer r there
is a unique field of cardinality pr which we denote by Fpr . We have [Fpr :
Fp] = r and Fpr is the splitting field of f(X) for any irreducible polynomial
f(X) ∈ Fp[X] of degree r. For integers n and r, Fpn is an extension of Fpr
if and only if r divides n in which case the degree [Fpn : Fpr ] is given by n

r .
Also in this case Fpn/Fpr is a Galois extension.

Consider the algebraic closure Fp of Fp. The map σ : a 7→ ap is an
automorphism of Fp that is identity on Fp. The automorphism σ is called
the Frobenius automorphism. The Galois group Gal (Fpn/Fpr) is a cyclic
group of order n

r and is generated by σr. In terms of the Frobenius we can
give a different characterisation of the field Fpr . The field Fpr is the fixed
field of Fp under the group of automorphisms generated by σr. Equivalently,
Fpr is the set of roots of the polynomial Xpr −X in Fp.

Let f(X) be any polynomial in Fq, q a power of prime p. Let f(X)
factorise as f1 . . . fr over Fq and let di denote the degrees of fi. The splitting
field of f is Fqm where m is the least common multiple of the integers
d1, . . . , dr.

6.3 Algebraic numbers and number fields

We now recall some algebraic number theory. A detailed presentation is
available in any standard textbook on algebraic number theory like for ex-
ample the one due to Neukirch [55].

76



Algebraic numbers are roots of polynomials over Q and algebraic inte-
gers are roots of monic polynomials in Z[X]. The set of rational algebraic
integers, i.e. algebraic integers in Q, is exactly Z. For an algebraic number
α there is an integer m ∈ Z such that mα is an algebraic integer. A number
field is a finite extension of Q.

Let α be an algebraic number and let K be the number field Q(α). Since
C is algebraically closed and contains Q, K can be seen as a subfield of C,
i.e. there is an isomorphism from K to a subfield of C. Such an isomorphism
from K to C is called an embedding of K. If K is of degree n then there
exists n distinct embeddings of K into C. An embedding σ of K is a real
embedding if the image of K under σ is contained in R, otherwise it is a
complex embedding . The height of α, denoted by H (α), is max{|σ(α)|cσ},
where σ varies over all embeddings of K and cσ is either 1 or 2 depending
on whether σ is a real or complex embedding. Let µα(X) ∈ Q[X] be the
minimal polynomial of α then H (α) is max{|η|cη} where η runs over all roots
of µα in C and cη is 1 if η is a real root and 2 otherwise. If α′ is a conjugate
of α then H (α) = H (α′). The height of an algebraic number is a measure of
its size. Using Cauchy-Schwartz the following inequalities can be derived.

Lemma 6.2. For any two algebraic numbers α and β:

1. H (α+ β) ≤ H (α) + H (β).

2. H (αβ) ≤ H (α) H (β).

6.3.1 Ring of Algebraic Integers

Let K be a number field of degree n and let OK denote the ring of algebraic
integers of K. There exist ω1, . . . , ωn ∈ OK such that OK = Zω1+. . .+Zωn.
Such a set of elements in OK is a basis for OK . If ω1, . . . , ωn is a basis for
OK then K = Qω1 + . . .+Qωn, i.e. the set {ω1, . . . , ωn} is a basis of K as
a vector space over Q. For two bases θ1, . . . , θn and ω1, . . . , ωn of OK there
is a unimodular matrix A = (aij) such that ωi =

∑
aijθj for all 1 ≤ i ≤ n..

Let K be a number field of degree n. Recall that K has n distinct
embedding σ1, . . . , σn into C. Let ω1, . . . , ωn be a basis for OK . Then the
discriminant dK of K is the positive integer |det(σj(ωi))|2. The discriminant
is independent of the basis chosen for OK .

An ideal a of OK is an additive subgroup of OK such that for every
α ∈ OK and β ∈ a αβ ∈ a. Let a be an ideal of OK . For an algebraic
integer α ∈ OK , the set αOK = {αβ|β ∈ OK} is an ideal. Such ideals are
called principal ideals. Often we will denote the principal ideal αOK as α.

77



A principal ideal domain is a ring where all ideals are principal. An example
for a principal ideal domain is Z.

We define the sum and product of ideals of OK . For ideals a and b of
OK , by a + b we mean {α + β : α ∈ a, β ∈ b}. Similarly by ab we mean
{
∑

i αiβi : αi ∈ a, βi ∈ b}. Furthermore a + b is the smallest ideal that
contains a and b and ab is the ideal a ∩ b.

We say that a divides b, denoted by a | b, if a ⊇ b. Unlike Z, for number
fields K, OK need not be a unique factorisation domain (for example in the
ring Z[

√
−5], 21 has two factorisations [55, Chapter I, §3]). However ideals

of OK have the unique factorisation property, i.e. any ideal a has a unique
factorisation into prime ideals as a = pa1

1 . . . parr , where ai is the highest
power k such that pki divides a (OK is a Dedekind domain).

For any ideal a, the ring OK/a is a finite ring. The norm of a, denoted
by N (a), is the number of elements in OK/a. Consider a number field K of
degree n. Let σ1, . . . , σn be the n distinct embeddings of K into C. For any
α ∈ OK , the norm of the principal ideal αOK , which we denote by N (α), is
equal to the product

∏
i σi(α).

Let p ∈ Z be any prime. For a number field K, the principal ideal
pOK , which we denote by p, need not be a prime ideal. Knowing how the
principal ideal p factorise is important and Kummer-Dedekind theorem is
algorithmically useful for this purpose (see [22, Theorem 4.8.13] for a proof).

Theorem 6.3 (Kummer-Dedekind). Let K = Q(θ), where θ is an algebraic
integer with minimal polynomial T (X) ∈ Z[X]. Let p ∈ Z be a prime that
does not divide the index [OK : Z[θ]]. Suppose T = T e11 . . . T ekk (mod p) is
the factorisation of T over Fp into its irreducible factors. Then pOK factors
into prime ideals as pOK = pe11 . . . pekk . Moreover the prime ideals pi are
given by pi = pOK + Ti(θ)OK and OK/pi ∼= Z[θ]/(p, Ti(θ)).

6.4 Basic algorithms

In this section we give an overview of the algorithmic results required for this
thesis. For a detailed presentation of various algorithmic aspects of algebraic
number theory we refer the reader to the textbook of Cohen [22]. The
algorithms we describe take various algebraic entities like algebraic numbers
and number fields as inputs. We need to encode these algebraic entities over
a finite alphabet Σ typically {0, 1}. The complexity of these algorithms are
measured in terms of the size of these encodings. Our first goal is to make
this precise.

78



6.4.1 Encoding algebraic entities

For integers c we use the standard binary encoding. The size of an integer c
is therefore dlg ce. A rational number r is given by a pair of coprime integers
(a, b) such that r = a

b . Thus, size (r) = size (a) + size (b). Elements of the
finite field Fp, for prime p, will be represented as integers in between 0 and
p. Hence an element of Fp is of size lg p.

The fields that we encounter in this thesis are either finite fields or num-
ber fields. Recall that any field K is a vector space over the associated base
field which is either Q, if the characteristic is 0, or Fp, if the characteristic
is p. We follow the approach of Lenstra [43, 44] for encoding fields. Here we
describe how number fields are presented. A similar approach can be taken
for finite fields for which we refer to the article of Lenstra [43].

There are two algorithmically equivalent ways of presenting a number
field K, (1) by explicit data and (2) by presenting a primitive polynomial
for K. Let K be a number field of degree n. By explicit data we mean a
linearly independent basis e1, . . . , en for K as a vector space over Q together
with n3 rationals {cijk}1≤i,j,k,≤n such that eiej =

∑
k cijkek. In addition by

multiplying each ei’s by suitable rational integers we assume, with out loss
of generality, that ei’s are algebraic integers. Thus the field can be presented
by giving the list {cijk}1≤i,j,k≤n and by size of K we mean

∑
size (cijk).

Any α ∈ K can be expressed uniquely as a summation α =
∑
aiei,

ai ∈ Q. By size (α) we mean
∑

size (ai). A polynomial of degree d over K
is presented by giving the ordered list of all its d coefficients and hence for
f(X) = a0 + . . .+ adX

d in K[X] by size (f) we mean
∑

size (ai).
Recall that K = Q(X)/µ(X) for some primitive polynomial µ(X) over

Q. Thus a number field K can be presented by giving a primitive polynomial
µ(X) ∈ Q[X]. If µ(X) = c0+c1X+. . .+cn−1X

n−1+Xn then by size (K) we
mean

∑
size (ci). As before we can ensure that µ(X) is a monic polynomial

with coefficients from Z.
A primitive polynomial µ(X) for K directly gives explicit data for K:

choose ei to be Xi−1 (mod µ(X)). Conversely we show that given explicit
data, one can compute a primitive polynomial. We first prove the following
lemma.

Lemma 6.4. Let K be a number field of degree n presented via explicit
data {cijk}1≤i,j,k≤n. Let e1, . . . , en denote the corresponding basis for K.
Given an algebraic number α =

∑n
i=1 aiei there is an algorithm to compute

the minimal polynomial of α that runs in time bounded by a polynomial in
size (K) and

∑
size (ai)

79



Proof. Recall that K is a vector space over Q with a basis {ei}ni=1 and
any algebraic number α in K is a vector

∑
aiei. The degree d of α is

the largest i such that the set {1, . . . , αi−1} is a linearly independent set of
vectors. It follows that −αd can be written as a linear combination −αd =
c0 + . . . + cd−1α

d−1. Using the explicit data we can compute the vectors
αi =

∑
j aijej in time polynomial in size (K) and

∑
size (ai). Furthermore

in polynomial time we can compute d and the rationals {ci : 0 ≤ i < d} as
it involves solving linear equations over Q. The minimal polynomial of α is
therefore c0 + c1X + . . .+ cd−1X

d−1 +Xd.

We require the following effective version of primitive element theorem
(see Section 6.10 of van der Waerden’s book [71]).

Lemma 6.5. Let α and β be algebraic numbers of degrees m and n respec-
tively. Let {αi}mi=1 and {βj}nj=1 be their Q-conjugates. Let c be any integer
such that αi+cβj 6= αr+cβs for all (i, j) 6= (r, s). Then α+cβ is a primitive
element of Q(α, β).

Consider the set A = {αi−αrβs−βj |s 6= j} of
(
m
2

)
.
(
n
2

)
+ 1 algebraic numbers.

It follows from Lemma 6.5 that if c 6∈ A then α+ cβ is a primitive element
of Q(α, β). Therefore there exists an integer c, 1 ≤ c ≤ m2n2 + 1 such that
α+ cβ is primitive. We summarise this in the following proposition.

Proposition 6.6. Let α and β be algebraic numbers of degree m and n
respectively. There exists an integer c ∈ {1, . . . ,m2n2 + 1} such that α+ cβ
is a primitive element of Q(α, β).

Computing the primitive polynomial for K is now straight forward. Let
K be presented via explicit data {cijk}1≤i,j,k≤n and let e1, . . . , en be the
corresponding basis. We compute constants 1 ≤ ci ≤ n4 + 1, 1 ≤ i ≤ n,
such that

∑n
i=1 ciei is a primitive element for K.

Let Kr denote the field Q(e1, . . . , er). We compute the primitive element
γi of Ki inductively. To begin with γ1 = e1. Assume that we have com-
puted γi−1. We choose an integer ci from the set {1, . . . , n4 + 1} such that
the minimal polynomial of γi−1 + ciei is of maximal degree. The algebraic
number γi = γi−1 + ciei is a primitive element for Ki. Having computed
γn we can compute the minimal polynomial for γn using Lemma 6.4. This
gives a primitive polynomial for K.

We have thus proved that presenting number fields via explicit data or
via a primitive polynomial are polynomial time equivalent. The size of K in
each of these presentation might differ but only up to a polynomial factor.
Thus we can assume without loss of generality either of the two presentation.

80



6.4.2 Factoring polynomials and related problems

Recall that for a field K, the ring K[X] is a unique factorisation domain.
Polynomials f(X) over Q can be factored into irreducible factors in poly-
nomial time using the celebrated Lenstra-Lenstra-Lovász [42] algorithm. A
key step in this algorithm is lattice basis reduction. A. K. Lenstra [41] gener-
alised this basis reduction to give a polynomial time algorithm for factoring
polynomials over number fields. Using norms of polynomials, Landau [38]
gave a polynomial time reduction from factoring over K to factoring over
Q. We summarise these results in the following theorem.

Theorem 6.7. Given a number field K and a polynomial f(X) in K[X]
there is an algorithm that computes the irreducible factors of f(X) in time
bounded by a polynomial in size (f) and size (K).

Let K be a finite field of characteristic p. Berlekamp [16] gave a de-
terministic polynomial time algorithm for factoring polynomials over K for
small primes p. However for large characteristic only randomised algorithms
are known. Given a polynomial f(X) ∈ Fq, there are randomised algorithms
that run in time polynomial in size (f) and lg q [17, 21] for factoring f(X).
We summarise these results in the following theorem.

Theorem 6.8. Given a polynomial f(X) over the finite field K of charac-
teristic p there is a deterministic algorithm that runs in time polynomial in
size (f) and p for factoring f(X). Given a polynomial f(X) ∈ Fq there is
a randomised algorithm that runs in time polynomial in size (f) and lg q to
factor f(X).

Even though factoring polynomials over finite fields do not have efficient
deterministic algorithms, there are efficient deterministic irreducibility tests.
More generally given a polynomial f(X) ∈ Fq[X] and an integer d there
is a polynomial time deterministic algorithm to compute the product of
all irreducible factors of f(X) of degree d (see Section 14.2 of [73]). In
particular, for a give number d one can compute the number of irreducible
factor of f(X) of degree d and thus we have an efficient irreducibility test.
We summarise this result in the following theorem.

Theorem 6.9. Given a polynomial f(X) ∈ Fq[X] of degree n and an integer
d ≤ n, there is a deterministic algorithm that runs in time polynomial in
size (f) and lg q that computes the product of all the irreducible factors of
f(X) of degree d. In particular there is a deterministic algorithm that runs
in time polynomial in size (f) and lg q that computes for each d the number
of irreducible factors of f(X) of degree d.

81



6.4.3 Algorithms for Galois group computation

Let L/K be a field extension. Recall that the Galois group Gal (L/K) is
the group of automorphisms of L that are identity when restricted to K. In
this section we describe known algorithms for computing the Galois group
of a polynomial and related problems.

Firstly from a computational point of view if K is a finite field then
the problem is trivial as the Galois group is generated by an appropriate
power of the Frobenius (see Section 6.2). Let q = pr. Given a polynomial
f(X) over a finite field Fq recall that if d1, . . . , dk are the set of degrees of
irreducible factors of f(X) then the Galois group of f(X) is a cyclic group of
order m where m is the least common multiple of d1, . . . , dk and is generated
by the rth power of the Frobenius. By Theorem 6.9 we can compute the
degrees d1, . . . , dk in time polynomial in size (f) and lg q.

For polynomials f(X) over number fields the best known algorithm for
computing the Galois group is due to Landau [37]. Given a polynomial
f(X) ∈ K[X] Landau’s algorithm computes the Galois group Gal (Kf/K)
in time polynomial in size (f) and [Kf : K]. Since [Kf : K] could be as large
as n!, this is an exponential time algorithm. We give a brief sketch of this
algorithm.

Let K be any number field and let L/K be an extension, not necessarily
Galois. There exists a primitive element α such that L = K(α). Let µ(X) ∈
K[X] be the minimal polynomial of α over K. Using Theorem 6.7 we first
factorise µ(X) over L. Any root of µ(X) can be expressed as a polynomial in
α. Let P1(α), . . . , Pr(α), Pi(X) ∈ K[X], be the distinct roots of µ(X) over
L then the Galois group Gal (L/K) consists of exactly r elements given by
the linear maps α 7→ Pi(α). Thus the Galois group L/K can be computed
in time polynomial in size (L). Thus the problem of computing the Galois
group amounts to computing a primitive polynomial for the splitting field
of f(X).

Given a polynomial f(X) ∈ K[X] of degree n. Let α1, . . . , αn be the
roots of f(X). Using Theorem 6.7 we compute the fields Li = K(α1, . . . , αi)
inductively. Start with L0 = K. Assume that we have already computed the
explicit data for Li. If f(X) splits completely over Li we stop otherwise let
g(X) be an irreducible factor of f(X) of degree greater than 1 over Li which
we obtain using Theorem 6.7. Then the field Li+1 = Li[X]/g(X) contains
at least one more root of f(X) than Li and the explicit data for Li+1 can
be computed. Having computed the splitting field L of f we can compute
the Galois group Gal (L/K) as described above. We summarise the above
discussion in the following theorem.

82



Theorem 6.10 (Landau). Given a polynomial f(X) over a number field
K and a positive integer N . There is a deterministic algorithm running
in time bounded by a polynomial in N and size (f) that checks whether the
splitting field of f is of degree less than N and if yes computes the entire
multiplication table for Gal (Kf/K). In particular given a number fields
L/K and an integer N , there is an algorithm running in time polynomial in
size (L), size (K) and N that decides whether the normal closure L̃ of L is
of degree less than N over K and if yes computes the explicit data for L̃.

The algorithm of Theorem 6.10 outputs the entire multiplication table of
the Galois group of f(X). There is a much more succinct way of presenting
the Galois group. Recall that the Galois group of f(X) is completely speci-
fied by its action on the roots of f(X). If n is the degree of f(X), by suitably
naming the roots of f(X) the Galois group of f(X) can be seen as a sub-
group of Sn. In other words there is a faithful representation of Gal (Kf/K)
as a permutation group over a cardinality n set Ω. Recall that subgroups of
Sn can be presented succinctly via a generator set. Moreover several natural
algorithmic tasks for a permutation group G given a generator set for it can
be accomplished efficiently. For example it is possible to determine if G is
solvable in polynomial time, or to determine a composition series for G in
polynomial time among several other tasks (a survey of important results is
available in the article of Luks [49]). Thus determining the Galois group by
its action on the roots of f is a reasonable way of describing the output.

For polynomials f(X) with small Galois group Theorem 6.10 gives an
efficient algorithm for Galois group computation. For example if f(X) is
irreducible and f(X) splits in K[X]/f(X) then we have a polynomial time
algorithm for computing the Galois group of f(X). In particular Theo-
rem 6.10 gives a polynomial time algorithm to compute the Galois group of
an irreducible polynomial f(X) with abelian Galois group. This is because
an abelian transitive subgroup of Sn is of size n.

Proposition 6.11. Let G be a transitive abelian permutation group on Ω
then for any α ∈ Ω Gα = 1 and #G = #Ω.

Proof. Fix any α ∈ Ω. Since G is transitive for any β ∈ Ω there is a gβ ∈ G
such that αgβ = β. The group Gβ is given by g−1

β Gαgβ and since G is abelian
is equal to Gα. This implies any element that fixes α fixes all elements β
pointwise and hence is identity. Therefore Gα = 1. By Orbit-Stabiliser
formula (Theorem 3.8) we have #G = #Ω.#Gα = #Ω.

Proposition 6.11 and Theorem 6.10 can be used to give a polynomial time
algorithm to test whether the Galois group of a polynomial f(X) ∈ K[X] is

83



abelian [37]. Given a polynomial f(X) we first compute all its irreducible
factors over K[X]. For each irreducible factor g(X) we to compute the
Galois group Gal (Kg/K) using Theorem 6.10. If Gal (Kg/K) is too large,
i.e. Gal (Kg/K) is of order greater than the degree of g(X) then clearly
it is not abelian (Proposition 6.11). Having computed the Galois group
Gal (Kg/K) explicitly we can check whether it is abelian. The Galois group
of f(X) is abelian if the Galois groups of each of its irreducible factor is
abelian.

Theorem 6.12 (Landau). Let f(X) ∈ K[X] be any polynomial. There is an
algorithm that runs in time polynomial in size (f) and size (K) that checks
whether the Galois group of f(X) is abelian. If in addition the polynomial
f(X) is irreducible, there is an algorithm that runs in time polynomial in
size (f) and size (K) that computes the Galois group of f .

Even though the Galois group of an irreducible polynomial f(X) ∈ Q[X]
with abelian Galois group can be computed efficiently, there are no efficient
algorithms when f(X) is reducible. In fact even when f(X) is a product
of quadratic polynomials nothing better than the exponential algorithm is
known ([44, Problem 3.4]). In Chapter 9, assuming the generalised Rie-
mann hypothesis, we give a randomised polynomial time algorithm for this
problem.

We now consider another important task, computing the fixed field of
a field L given a set of automorphism of L. Given an automorphism σ of
L, the fixed field of L under automorphisms generated by σ is the kernel of
the map σ − 1. Let L be any field of degree n presented via explicit data
{cijk}1≤i,j,k≤n. Let e1, . . . , en be the corresponding basis for L. Then any
automorphism σ is a linear map on L as a vector space over Q. Having fixed
a basis e1, . . . , en, each σ can be represented by an n × n matrix Aσ over
Q. The subspace of solutions for the linear equation Aσx = x is exactly the
fixed field of L under σ. A basis for this field can be computed in polynomial
time and thus we have its explicit data.

To find the fixed field of L under the automorphisms generated by
S = {σ1, . . . , σr}, consider the fixed field Li of L under the automorphisms
generated by {σ1, . . . , σi}. Starting from L0 = L we compute the fields Li
inductively. Having computed a basis for Li−1, we compute Li by comput-
ing a basis of the kernel of σi− 1 over Li as described above. This inductive
algorithm is evidently polynomial time. Thus we have the following theorem.

Theorem 6.13. Given a field L via explicit data {cijk}1≤i,j,k≤n and a set
S of automorphisms of L. There is a deterministic algorithm running in

84



time polynomial in #S and size (L) to compute the fixed field of L under the
group generated by S.

6.5 Some useful bounds

In this section we prove certain bounds that will be useful in analysing the
algorithms of this thesis. Given a number field K of degree n presented via
explicit data. Our first goal is to give a bound on the height of algebraic
numbers of K in terms of its size.

Lemma 6.14. Let K be a number field of degree n presented via explicit
data {cijk}1≤i,j,k≤n. Let e1, . . . , en be the corresponding basis for K. Then
for each i, H (ei) ≤ n.2size(K). It follows that for any α in K, H (α) ≤
n2.2size(α)+size(K).

Proof. Let 1 ≤ i ≤ n be such that H (ei) is maximum. We have eiei =∑n
k=1 ciikek. Each cijk is less than 2size(K). Hence it follows that H (ei)

2 ≤
nH (ei) 2size(K) (Lemma 6.2) and H (ei) ≤ n.2size(K).

Let α =
∑n

k=1 aiek. Recall that size (α) =
∑

size (ak) and hence ak ≤
2size(α). Therefore H (α) ≤ n.2size(α).H (ei) = n2.2size(α)+size(K).

Conversely, in many cases we would like to bound the sizes of algebraic
numbers given a bound on its height. The following lemma serves this
purpose.

Lemma 6.15. Let K be a number field of degree n and α ∈ OK . Then
size (α) ≤ n3(lg H (α) + size (K)).

Proof. Let {cijk}1≤i,j,k≤n be the explicit data for K and let e1, . . . , en be
the corresponding basis. Let σ1, . . . , σn be the n distinct embeddings of K
into C and let eij = σi(ej). Consider the algebraic integer α =

∑
j cjej . If

αi = σi(α) =
∑

j cjeij then |αi| ≤ H (α).
Consider the system of linear equations

∑
cjeij = αi, 1 ≤ i ≤ n. By

Cramer’s rule, we have cj =
det(Aj)
det(A) where A is the n×n matrix (eij)1≤i,j≤n

and Aj is the matrix obtained by replacing the jth column of A by αi’s. The
number det(A)2 is a symmetric function on the algebraic integers eij ’s. It
follows that det(A)2 is in Z and therefore |cj | ≤ det(Aj) for each i.

For an n × n matrix M , the determinant of M is bounded by nnλn

where λ is the largest entry of M . Therefore |det(Ai)| ≤ nn.λn where λ =

85



max(H (ei) ,H (α)) (H (eij) = H (ei)). We have thus proved that size (ci) ≤
n.(lg n+lg H (α)+lg H (ei)) ≤ n.(lg H (α)+size (K)+2 lg n). We then obtain

size (α) =

n−1∑
i=0

size (ci) ≤ n3(lg H (α) + size (K)).

We now prove a bound on the size of the minimal polynomial of an
algebraic integer α in terms of its height.

Proposition 6.16. Let α be an algebraic integer of degree n and let µα(X)
be the minimal polynomial of it over Q. Then size (µα(X)) ≤ n2(1 +
lg H (α)).

Proof. Let α1, . . . , αn be the conjugates of α then the minimal polyno-
mial is give by µ(X) =

∑n
i=0 siX

i where si is the ith symmetric function
over α1, . . . , αn, i.e. si is the sum of all possible products of elements in
{α1, . . . , αn} taken i at a time. Since H (αi) = H (α) we have |si| ≤

(
n
i

)
H (α)i

. Therefore

size (µα(X)) ≤
∑
i

lg

[(
n

i

)
H (α)i

]
≤ n2(1 + lg H (α)).

Conversely, given and algebraic number α, we often need a bound on
H (α) in terms of the size of its minimal polynomial µα over Q. For this
purpose we state an inequality due to Landau [36] (a proof of this inequality
is available in [73, Theorem 6.31]). Consider a polynomial f(X) =

∑
aiX

i ∈
C[X]. Define ‖f‖2 as

√∑
|ai|2. We use the following inequality to bound

the sizes of algebraic numbers.

Lemma 6.17 (Landau). Let f(X) = a0 + . . . + adX
d ∈ C[X] of degree d,

and let α1, . . . , αd ∈ C be its roots. Then,

|ad|
d∏
i=1

max(1, |αi|) ≤ ‖f‖2.

Let α be an algebraic integer of degree n and let µα(X) = c0 + c1X +
. . . + cnX

n−1 + Xn be its minimal polynomial. For all i, ci ≤ 2size(µα) and
therefore ‖µα‖2 ≤

√
n2size(µα). Recall that H (α) is the maximum over |η|cη

86



where η ranges over the roots of µα and cη is either 1 or 2 depending on
whether η is real or complex. Together with Landau’s inequality we thus
have the following bound.

Proposition 6.18. Let α be an algebraic integer with minimal polynomial
µα over Q. Then H (α) ≤ n.4size(µα).

We now prove a bound on the discriminant of a number field. For a
polynomial T (X) ∈ Q[X] with roots θ1, . . . , θn by discriminant , which we
denote by dT we mean the product

∏
i 6=j(θi − θj). For an algebraic number

α, by the discriminant of α, denoted by dα, we mean the discriminant of the
minimal polynomial µα(X) of α over Q. Consider a number field K = Q(θ)
where θ is an algebraic integer. The discriminant dK of K divides dθ and
dθ
dK

= [OK : Z[θ]]2. Therefore to bound dK it is sufficient to give a bound
on the discriminant dθ. We use of this to show the following bound on the
discriminant.

Theorem 6.19. Let f(X) be a monic polynomial over Z of degree n with
roots α1, . . . , αn. There exists an algebraic integer θ =

∑
ciα, ci ∈ Z

such that the θ is a primitive element for the extension Qf/Q and lg dθ ≤
(n!)3.size (f). As a result we have lg dQf ≤ (n!)3.size (f).

Proof. Let N ≤ n! be the degree of the splitting field K = Qf . Let
α1, . . . , αn be the roots of f(X) then K = Q(α1, . . . , αn). By Proposi-
tion 6.6 there are integer constant 1 ≤ ci ≤ N4 + 1 such that θ =

∑
i ciαi

is a primitive element of K. Since f(X) is a monic polynomial over Z it
follows that αi’s are algebraic integers and so is θ.

By Landau’s inequality we have |αi| ≤
√
n2size(f) and therefore we have

H (θ) ≤ n.N44size(f). Therefore we have

lg dK ≤ lg dθ ≤ N2(1 + 2 lg n+ 4 lgN + 2size (f)).

Since N ≤ n! we have the required bound.

6.6 Discussion

Computing the Galois group of f(X) is hard both in theory and in practice.
No polynomial time algorithm is known. Current computer algebra systems
can compute typically the Galois group of polynomials of degree in the range
20 to 25. Apart from their mathematical significance many computational
problems that arise in algebraic number theory have wide range of appli-
cation especially in cryptography. Hence algorithms that run efficiently in

87



practice are of utmost importance. For a detailed presentation of algorithms
from a practical point of view we refer to the book of Cohen [22].

However, in this thesis our focus is not directed on these issues. A
polynomial time algorithm will be considered efficient although practical
implementations might turn out to be too slow. In this sense our approach
is similar to the approach of Lenstra in his survey article [44]. In the absence
of efficient algorithms our attempt would be to give nontrivial complexity
upper bounds.

As mentioned before, to prove nontrivial complexity theoretic results one
often require novel techniques. A striking example is the recent AKS algo-
rithm for primality testing [1]. Although the algorithm runs in polynomial
time, as far as testing primality of large numbers in practical contexts like
for example in cryptographic application, the randomised tests are still pre-
ferred. However the techniques developed could lead to solutions of other
interesting questions.

Often complexity theoretic classification of natural problems have been
fruitful in understanding the inherent intractability of these problems. For
example showing hardness results for a problem say for NP in some sense
shows that the problem is computationally hard. Even though computing
Galois groups are hard in practice, no hardness results (in the complex-
ity theoretic sense) is yet known. Showing such hardness results could be
challenging and probably need considerable mathematical techniques.

Attempts to understand the complexity of natural problems have led to
considerable progress in complexity theory as well. For example study of
one-way functions led Valiant to define the complexity class UP [69]. Alge-
braic number theory and Galois theory is a rich source of natural computa-
tional problems and studying the complexity of these problems might lead
to considerable progress in complexity theory as well. What makes these
problems particularly attractive is the availability of powerful mathematical
tools. Unfortunately even though the mathematics is fairly well understood
virtually nothing is known about the computational complexity of many of
the fundamental problems in this area. On one hand even for polynomials
with abelian Galois group no efficient algorithms are know unconditionally.
On the other hand there is no hardness result known despite the fact that
the best known algorithm for computing the Galois group is exponential
time.

88



Chapter 7

Testing nilpotence of Galois
group

Given a polynomial f(X) over Q in this chapter we study the following
two problems (1) checking whether the Galois group is nilpotent and (2)
checking whether the Galois group is in Γd. As mentioned before knowing
certain properties of the Galois group of a polynomial f(X) gives informa-
tion about its roots. For example the seminal work of Galois shows that
a polynomial f(X) is solvable by radicals if and only if its Galois group is
solvable. However algorithmically this does not give a satisfactory answer as
computing the Galois group is hard. Landau and Miller [39] achieved a re-
markable breakthrough by giving a polynomial time algorithm for checking
solvability.

First, we show that given a polynomial f(X) ∈ Q[X], we can test
whether the Galois group of f(X) is nilpotent in polynomial time. Re-
call that a group G is nilpotent if all its Sylow subgroups are normal. Even
though every nilpotent group is solvable, the Landau-Miller solvability test
does not give a nilpotence test. This is because knowing the composition
factors of a group G alone is not enough to decide whether G is nilpotent.

We generalise the Landau-Miller test and show that Γd-testing for con-
stant d is in polynomial time. Recall that a group G is in Γd if there is a
composition series G = G0B . . .BGt = 1 such that Gi/Gi+1 is either abelian
or is isomorphic to a subgroup of Sd.

An important idea used in both these tests is the Galois correspondence
between blocks, fields and groups that we now explain. Let f(X) be an
irreducible polynomial in Q[X] and let G be the Galois group of f(X).
Since f(X) is irreducible, G is a transitive permutation group on Ω, the set

89



of roots of f(X). For a block ∆ recall that G∆ is the subgroup of G that
setwise stabilises ∆. Let Q∆ denote the fixed field Fix (Qf , G∆).

Theorem 7.1. Let f(X) ∈ Q[X] be an irreducible polynomial with Galois
group G. Let Ω be the roots of f(X) and let α ∈ Ω be any particular
root. There is a one-to-one correspondence between G-blocks containing α,
subgroups of G containing Gα and subfields between Q(α) and Q given by

∆
 G∆ 
 Q∆.

Furthermore if {α} = ∆0 ⊆ . . . ⊆ ∆m = Ω is an increasing chain of blocks
then Q(α) = Q∆0 ⊇ . . . ⊇ Q∆m = Q is a decreasing tower of number fields
between Q(α) and Q.

The first is the Galois correspondence between G-blocks and subgroups
of G containing Gα (Theorem 3.11) and the second correspondence is via
the fundamental theorem of Galois theory (Theorem 6.1). The crucial ob-
servation of Landau and Miller is that even though the Galois group G is
unknown, the field Q∆ can be computed in polynomial time. Knowing the
structure of the fieldsQ∆ gives us valuable information about the groupsG∆.
Consider a permutation group G on the set Ω. Let ∆ ⊆ Σ be two G-blocks
recall that B (Σ/∆) denotes the set of blocks {∆g|g ∈ G ∆g ⊆ Σ}. The
group G (Σ/∆) is the subgroup of GΣ that fixes all the blocks in B (Σ/∆)
and G∆ = G (Ω/∆).

Proposition 7.2. Let ∆ ⊆ Σ be two G blocks then.

1. The normal closure of the field Q∆ over QΣ is exactly the fixed field
Fix (Qf , G (Σ/∆)). In particular the normal closure of Q∆ is the fixed
field Fix

(
Qf , G∆

)
.

2. The index of G-blocks [Σ : ∆] is equal to the degree [Q∆ : QΣ].

Proof. Recall that the normal closure of Q∆ over QΣ is the smallest field
containing Q∆ that is normal over QΣ. The field Qf is a Galois extension of
QΣ with Galois group GΣ. Since Q∆ is contained in Qf it follows that the
normal closure of Q∆ over QΣ is contained in Qf . Let L ⊆ Qf be any normal
extension of QΣ containing Q∆. By the fundamental theorem of Galois
theory (Theorem 6.1), L is the fixed field Fix (Qf , H) for some subgroup H
of G∆ that is normal in GΣ. The group G (Σ/∆) is the largest subgroup
of G∆ that is normal in GΣ (Theorem 3.12). Therefore Fix (Qf , G (Σ/∆))
is the smallest normal extension of QΣ that contains Q∆ and is thus the
normal closure of Q∆ over QΣ. Let Σ = Ω then we have QΣ = QΩ = Q.

90



Hence the normal closure of Q∆ is Fix
(
Qf , G∆

)
. This completes the proof

of part 1.
For G-blocks ∆ ⊆ Σ, by the Galois correspondence of blocks (Theo-

rem 3.11), the index [Σ : ∆] = [GΣ : G∆]. Consider any G-block Ψ. The
extension Qf/QΨ is Galois with Galois group GΨ. Therefore [Qf : QΨ] =

#GΨ. It follows that [GΣ : G∆] =
[Qf :QΣ]
[Qf :Q∆] = [Q∆ : QΣ]. This proves part

2.

Proposition 7.2 will play an important role in our algorithms for nilpo-
tence and Γd testing. We give polynomial time algorithm for computing
the fields Q∆ in Section 7.1. In Section 7.2 we study the block structure of
transitive nilpotent permutation groups. Using these properties we give a
nilpotence test. Finally the Γd-test is given in section 7.3.

7.1 Computing the fields Q∆

The goal of this section is to prove the following theorem that plays an
important role in both the property testing algorithms we are going to de-
scribe.

Theorem 7.3. Let f(X) be an irreducible polynomial over Q with Ω as its
set of roots. Let G ≤ Sym (Ω) be its Galois group. Let ∆ be any G-block
of Ω such that α ∈ ∆ for some α ∈ Ω. There is an algorithm that given
the field Q∆ as a subfield of Q(α), runs in time polynomial in size (f) and
size (Q∆) and computes the field QΣ for all G-blocks Σ such that ∆ is a
maximal G-subblock of Σ. Moreover size (QΣ) is at most a polynomial in
size (f) and is independent of the size of the presentation of Q∆.

Although stated differently, this algorithm is due Landau and Miller [39]
and is used in their polynomial-time solvability test. Through a sequence of
lemmas we prove this theorem in the rest of this section.

For a G-block ∆ let T∆(X) be the polynomial defined by

T∆(X) =
∏
η∈∆

(X − η).

Proposition 7.4. If T∆(X) = δ0 + δ1X + . . . + δr−1X
r−1 + Xr then field

Q∆ is the field Q(δ0, . . . , δr−1).

Proof. For any automorphism σ ∈ G we have σ(T∆) = T∆σ . Therefore if σ
is in G∆ then σ(T∆) = T∆. Let T∆(X) = δ0 + δ1X + . . .+ δr−1X

r−1 +Xr.

91



Comparing the coefficients of Xi we have σ(δi) = δi for all 0 ≤ i < r.
Conversely if for some σ ∈ G, if σ(δi) = δi, 0 ≤ i < r, then σ(T∆) = T∆ and
hence σ ∈ G∆. Thus we have the following proposition.

In view of Proposition 7.4, to compute Q∆ it is sufficient to compute the
polynomial T∆(X). The algebraic integers δi’s are symmetric functions on
the roots of f(X) in ∆ and hence using Lemma 6.15 and Proposition 6.18,
size (δi) is bounded by a polynomial in size (f). Having computed the poly-
nomial T∆, one can compute the field Q∆ in time polynomial in size (f).

We prove the following important lemma on the irreducible factors of
f(X) over Q∆.

Lemma 7.5. Let ∆ be a G-block containing α. There is a one-to-one cor-
respondence between irreducible factors of f(X) over Q∆ and orbits of G∆

given by

Ω′ 

∏
η∈Ω′

(X − η), Ω′ a G-orbit.

Proof. Let g(X) be an irreducible factor of f(X) over Q∆. Then G∆ =
Gal (Qf/Q∆) acts transitively on the roots of g(X). Hence for any two
roots η and η′ of g(X) there is an element σ ∈ G∆ such that σ(η) = η′.
Therefore η and η′ belong to the same G∆-orbit. Conversely if η and η′

belong to the same G∆ orbit then there is a σ ∈ G∆ such that σ(η) = η′

and they are Q∆-conjugates. This is possible if and only if η and η′ are the
roots of the same irreducible factor g of f(X) over Q∆.

The above lemma has the following important corollary.

Lemma 7.6. Let ∆ be any G-block containing α. The polynomial T∆ is
the irreducible factor of f over Q∆ which has α as its root. Let Σ be any
G-block such that Σ ⊇ ∆. If g is an irreducible factor of f over Q∆ then Σ
contains a root of g if and only if it contains all the roots of g.

Proof. In the correspondence of Lemma 7.5, T∆ corresponds to the orbit of
α under G∆. Hence T∆ is the factor of f(X) that has α as a root.

Let ∆ ⊆ Σ be any two G-blocks and let g(X) be an irreducible factor of
f(X) over Q∆. Suppose that Σ contains a root η of g. Any other root η′

of g is in the same G∆ orbit, i.e. η′ ∈ ηG∆ . However since ∆ ⊆ Σ we have
G∆ ≤ GΣ. Hence η′ ∈ ηGΣ = Σ.

The above theorem gives a polynomial time algorithm to identify the
polynomial T∆(X). Recall that Q∆ is a subfield of Q(α). The polynomial

92



T∆(X) is that irreducible factor g(X) of f(X) for which g(α) = 0. We now
prove an important lemma from which the proof of Theorem 7.3 is more or
less direct.

Lemma 7.7. Let ∆ be a G-block containing α. Given the field Q∆ as a
subfield of Q(α) and an irreducible factor g of f over Q∆, we can compute
in polynomial time TΣ as a polynomial in Q(α)[Y ], where Σ is the smallest
G-block containing ∆ and the roots of g.

Proof. Let the factorisation of f over Q∆ be f = g0 . . . gr, where g0 = T∆

and g = g1. Denote the set of roots of gi by Φi, for each i. Then by
Lemma 7.5, Φi’s are the orbits of G∆ and the polynomial TΣ(X) is precisely
the product of gi such that Φi ⊆ Σ. Let β be any root of g(X), and
σ ∈ Gal (Qf/Q) be an automorphism that maps α to β. The map σ is in fact
an isomorphism between the fields Q(α) and Q(β). Let Σ be the smallest
G-block containing ∆ and Φ1. It follows from the Galois correspondence
of blocks (Theorem 3.11) that GΣ is generated by G∆ ∪ {σ}. If we knew
the permutation σ and the orbits Φi explicitly then the following transitive
closure procedure would give us Σ.

S ← {∆,Φ1}
repeat

S′ ← {Φσ | Φ ∈ S}
foreach orbit Φj do

1 if Φj ∩ Φσ 6= ∅ for some Φσ ∈ S′ then S ← S ∪ {Φj} ;
end

until S is unchanged ;
Output

⋃
{Φ | Φ ∈ S})

Algorithm 9: Computing Σ

Our goal is to “simulate” Algorithm 9. The key ideas is that the orbit Φi

corresponds to the irreducible factor gi of f(X) over Q∆ and testing whether
Φj ∩ Φσ

i 6= ∅ (step 1 of the Algorithm 9) amounts to checking whether the
g.c.d of gj and gσi is nontrivial. We give a polynomial time algorithm for
computing the g.c.d of gj and gσi .

First, we compute the extension field Q(α, β). We factor the polynomial
g(X) over the fieldQ(α) into irreducible factors. Let h be any irreducible fac-
tor of g over Q(α) then Q(α, β) = Q(α)[X]/h(X). Since [Q(α, β) : Q] ≤ n2

and the heights H (α) = H (β) is bounded by 2O(size(f)) (Proposition 6.18),
we can compute in polynomial time the explicit data of Q(α, β). Further-
more, in polynomial time we compute a primitive element γ = α + cβ,

93



1 ≤ c ≤ n8 + 1, of the field Q(α, β) and polynomials a(X) and b(X) in Q[X]
such that α = a(γ) and β = b(γ).

Any irreducible factors gi(X) can be written as a bivariate polynomial
gi(X,α). Hence symbolically gσi (X) is the bivariate polynomial gi(X,β). In
gi(X,α) and gi(X,β) we replace α and β by a(γ) and b(γ) respectively to get
the polynomials gi(X) and gσi (X) as polynomials of over Q(γ) = Q(α, β).
Having computed the polynomials gσi and gj as polynomials over the same
field Q(γ), one can compute their g.c.d in polynomial time. The complete
algorithm to compute the polynomial TΣ is given below (Algorithm 10).
Clearly Algorithm 10 runs in time bounded by a polynomial in the input size.
The correctness of the algorithm follows from the correctness of Algorithm 9.

S ← {T∆, g}
repeat

S′ ← {gσi | gi ∈ S}.
foreach factor gj do

if gcd(gj , h
σ) is nontrivial for some hσ ∈ S′ then

S ← S ∪ {gj};
end

until S is unchanged ;
Output TΣ =

∏
gi∈S gi
Algorithm 10: Computing TΣ

We now complete the proof of Theorem 7.3. By Proposition 7.4, it
suffices to compute the set S of polynomials TΣ such that Σ is a minimal
G-block properly containing ∆. Let f(X) factor as f(X) = g0 . . . gr over
Q∆ with g0 = T∆.

Let Σi be the smallest G-block containing ∆ and all the roots of gi. For
any G-block Σ such that ∆ is a maximal G-subblock of Σ, there is an i,
1 ≤ i ≤ r such that Σ = Σi. Using Lemma 7.7 we compute TΣi ’s for each
1 ≤ i ≤ r. The G-block Σj ⊆ Σi if and only if TΣj divides TΣi and hence Σi

is a minimal G-block properly containing ∆ if and only if TΣi is not divisible
by TΣj for all j 6= i. The set S is the collection of all the polynomials TΣi

such that for all j 6= i, TΣj - TΣi . Clearly computing S is in polynomial
time.

Having computed the set S we compute the fields QΣi for all polynomials
TΣi(X) ∈ S. Recall that QΣi is obtained by adjoining the coefficients of the
polynomial TΣi each of which are symmetric functions of roots of f(X)

94



in Σi. Thus although computing QΣi takes time proportional to size (f)
and size (Q∆), the size of the explicit data computed for the field QΣi is
polynomial in size (f) and is independent of the size of presentation of Q∆.
This completes the proof of Theorem 7.3.

Remark 7.8. That the size of the computed presentation of QΣ is bounded
by a polynomial in size (f) and is independent on the size of Q∆ is important
because Theorem 7.3 will be used repeatedly in our algorithms to compute
a tower of fields Q∆0 ⊃ . . . ⊃ Q∆m for a maximal chain of G-blocks ∆0 ⊂
. . . ⊂ ∆m. The length m of such a chain of G-blocks could be as large as
lg n where n is the degree of f . If the size of Q∆i depended on the size of
presentation of Q∆i−1 then the presentation of Q∆m could be as large as
nlgn.

7.2 Nilpotence testing for Galois groups

In this section we give a polynomial time algorithm for testing whether the
Galois group of a given polynomial is nilpotent. We give a characterisation
of transitive nilpotent groups which can be tested in polynomial time. Recall
that a finite group G is nilpotent if and only if every Sylow subgroup of G
is normal (see Lemma 3.5 for other equivalent definitions). For a nilpotent
group G and a prime p that divides #G, there is a unique p-Sylow subgroup
which we denote in this section by Gp. In fact Gp is the set of all element
of G that has order a power of p. Moreover any subgroup H of G is also
nilpotent and the p-Sylow subgroup of H is Gp ∩H. If {p1, . . . , pk} are the
set of prime factors of #G then G = Gp1 × . . .×Gpk .

Lemma 7.9. Let G be a transitive nilpotent permutation group on Ω then

1. For all primes p, p divides #G if and only if p divides #Ω.

2. For any prime p | #G and α ∈ Ω there is a block Σα
p containing α

such that #Σα
p is the highest power of p that divides #Ω.

3. Let ∆ be any G-block containing α such that #∆ = pl for some prime
p dividing #G. Then ∆ ⊆ Σα

p . Also for all q different from p the
q-Sylow subgroup of G∆ is same as the q-Sylow subgroup of Gα, i.e.
Gq ∩G∆ = Gq ∩Gα.

Proof. As G is transitive on Ω, #Ω divides #G by Orbit-Stabiliser formula
(Theorem 3.8). Hence, each prime factor of #Ω divides #G. Conversely let

95



p be a prime factor of #G. For α ∈ Ω, the set Σα
p = αGp is a nontrivial G-

block as Gp is a normal subgroup of G (Lemma 3.13). Since Gp is transitive
on Σα

p , it follows from the Orbit-Stabiliser formula that #Σα
p divides #Gp.

Hence #Σα
p is pl for some l > 0. Since p divides the cardinality of a G-block

Σα
p , p must divide #Ω. This proves part 1.

Next, we prove (2). From the Galois correspondence of G-blocks (The-
orem 3.11) we have [Ω : Σα

p ] = [G : GΣαp ]. The prime p does not divide
[G : Gp] as Gp is the p-Sylow subgroup of G. Therefore p does not divide
[G : GΣαp ] either as Gp is a subgroup of GΣαp . Hence p is not a factor of
[Ω : Σα

p ] and #Σα
p is the highest power of p that divides #Ω.

To prove part 3 notice that G∆ is a nilpotent group with the unique
normal q-Sylow subgroup Gq ∩G∆. Therefore we have G∆ =

∏
q(Gq ∩G∆).

By the Galois correspondence (Theorem 3.11) of blocks we have

#∆ = [G∆ : Gα] =
∏
q

[Gq ∩G∆ : Gq ∩Gα]. (7.1)

Since Gq ∩ G∆ is a q-group, the prime p divides the index [Gq ∩ G∆ :
Gq ∩Gα] if and only if q = p. However, in Equation 7.1 #∆ is a power of p.
This is possible if and only if [Gq ∩ G∆ : Gq ∩ Gα] = 1 for all q 6= p. Thus
Gq ∩G∆ = Gq ∩Gα for all q different from p.

The group G∆ is therefore the product group Gp ∩G∆×
∏
q 6=pGq ∩Gα.

Since the group GΣαp contains both Gp and Gα we have GΣαp ≥ G∆. Thus
by Galois correspondence of blocks (Theorem 3.11), ∆ is a G-subblock of
Σα
p .

Nilpotent groups behave almost like p-groups. Let G be a transitive
nilpotent permutation group on Ω and let p be a prime dividing #G. We
prove that as far as G-blocks contained in Σα

p are concerned, G behaves like
Gp. The following lemma makes this precise.

Lemma 7.10. Let G be a transitive nilpotent permutation group acting on
Ω. Let p be any prime that divides #G and let Gp be the corresponding
p-Sylow subgroup. Consider any element α ∈ Ω and let Σα

p be the G-block

αGp. A set ∆ ⊆ Σα
p is a G-block if and only if ∆ is a Gp-block under the

transitive action of Gp on Σα
p .

Proof. Clearly any G-block contained in Σα
p is a Gp-block as G contains

Gp. Conversely consider a Gp-block ∆ of Σα
p . The group Gp ∩G∆ contains

Gp ∩ Gα. To see this consider the transitive action of Gp restricted to Σα
p .

The restriction action is a homomorphism ψ : Gp → Sym
(
Σα
p

)
. Let H

96



denote the image ψ(Gp) = Gp|Σαp . The groups Gp ∩ G∆ and Gp ∩ Gα are

the pullbacks ψ−1(H∆) and ψ−1(Hα) respectively. Since the subset ∆ is a
H-block of Σα

p and contains α, H∆ ≥ Hα. Therefore Gp ∩G∆ ≥ Gp ∩Gα.
Consider the group G′ = (Gp ∩G∆) ×

∏
q 6=pGq ∩Gα. The group Gα is

nilpotent and hence Gα = (Gp ∩ Gα) ×
∏
q 6=pGq ∩ Gα. Since Gp ∩ G∆ ≥

Gp∩Gα we have G′ ≥ Gα. Therefore by the Galois correspondence of blocks
(Theorem 3.11) we have ∆ = αG

′
is a G-block between {α} and Σα

p .

We now study the structure of blocks of a p-group. We state the following
result due to Luks [46, Lemma 1.1].

Lemma 7.11 (Luks). Let G be a p-group acting transitively on Ω and let
∆ be a maximal G-block. Then the index [Ω : ∆] is exactly p and G∆ =
G (Ω/∆) = G∆ is a normal group of index p in G.

Proof. Let ∆ be a maximal G-block. By Galois correspondence of blocks
we have [Ω : ∆] = [G : G∆]. Suppose that [G : G∆] = pl for l ≥ 1.
The group G being a p-group, it follows that there is a subnormal series
G = G0 BG1 . . . BGl = G∆ such that [Gi : Gi+1] = p [30, Theorem 4.3.2].
Let α be any element of ∆. Since G∆ ≥ Gα, (Gi)α = Gα. Therefore by

Orbit-Stabiliser formula #αG

#αG1
= #G

#G1
= [G : G1] = p. However G1 is a

normal subgroup of G and αG1 6= Ω. Therefore αG1 is the maximal block ∆
and G∆ = G1.

Recall that G∆ = G (Ω/∆) is the largest normal subgroup of G = GΩ

contained in G∆ (Theorem 3.12. However G∆ = G1 itself is normal. Hence
G∆ = G∆.

Applying Lemma 7.11 repeatedly we have the following lemma.

Lemma 7.12. Let G be a transitive p-group acting on Ω and α ∈ Ω. Let
{α} = ∆0 ⊂ . . . ⊂ ∆t = Ω be any maximal chain of G-blocks. Then

1. [∆i+1 : ∆i] = p for all 0 ≤ i < t.

2. G (∆i+1/∆i) = G∆i.

3. The group G∆i is a normal subgroup of G∆i+1 and the quotient group
G∆i+1/G∆i is cyclic of order p.

In particular any minimal G-block is of cardinality p.

We now prove the following important property of transitive nilpotent
permutation groups.

97



Lemma 7.13. Let G be a transitive nilpotent permutation group on Ω. Let
p be any prime dividing #G. Let ∆ be any G-block such that #∆ = pl for
some integer l ≥ 0. Let m be the highest power of p that divides #Ω. If
l < m then we have

1. There exists a G-block Σ such that ∆ is a maximal G-subblock of Σ
and [Σ : ∆] = p.

2. For all G-blocks Σ such that ∆ is a maximal G-subblock of Σ and
[Σ : ∆] = p, G∆ is a normal subgroup of GΣ.

Proof. Let Σα
p as before denote the G-blocks αGp . Since #∆ is a power of

p it follows that ∆ is a G-subblock of Σα
p (Lemma 7.9). The subset ∆ is a

Gp-block on the transitive action of Gp on Σα
p (Lemma 7.10). Consider the

action of the p-group Gp on Σα
p . If l < m there is a Gp-block Σ such that

Σα
p ⊇ Σ ⊃ ∆ and [Σ : ∆] = p. By Lemma 7.10 it follows that Σ is a G-block

contained in Σα
p . This proves part 1.

Let α be any element of ∆. It follows from Lemma 7.9 that for all q 6= p
the q-Sylow subgroup ofGΣ andG∆ are bothGq∩Gα. Let Ĝp be the product

group
∏
q 6=pGq. The groups GΣ and G∆ are (Gp ∩ GΣ) × (Ĝp ∩ Gα) and

(Gp∩G∆)×(Ĝp∩Gα) respectively. Moreover the groups Gp∩GΣ and Gp∩G∆

are p-groups with index [Gp ∩ GΣ : Gp ∩ G∆] = [GΣ : G∆] = [Σ : ∆] = p.
Therefore Gp ∩ G∆ is a normal subgroup of Gp ∩ GΣ. As a result G∆ =

(Gp∩G∆)× (Ĝp∩Gα) is a normal subgroup of GΣ = (Gp∩GΣ)× (Ĝp∩Gα)

and the quotient group GΣ
G∆

=
Gp∩GΣ

Gp∩G∆
is isomorphic to Fp.

We give the following characterisation of transitive nilpotent groups.

Theorem 7.14. Let G be a transitive permutation group on Ω then the
following are equivalent.

1. G is nilpotent.

2. For all primes p dividing #G, p divides #Ω and there exists a maximal
chain of G-block {α} = ∆0 ⊂ . . . ⊂ ∆m such that

(a) m is the highest power of p dividing #Ω.

(b) G∆i is a normal subgroup of G∆i+1.

(c) [∆i+1 : ∆i] = p for all 0 ≤ i < m.

(d) p - [G : G∆m ].

98



Proof. If G is nilpotent then condition 2 holds. The required maximal chain
of G-blocks is any maximal chain between {α} and Σα

p . We now prove the
converse.

Consider any prime p dividing #G. The prime p divides #Ω and let
m > 0 be the highest power of p dividing #Ω. Let {α} = ∆0 ⊂ . . . ⊂ ∆m

be a maximal chain of G-blocks satisfying the conditions 2a–2d. We prove
that G∆m is the unique p-Sylow subgroup for G.

Recall that G (∆i+1/∆i) is the largest subgroup of G∆i that is normal
in G∆i+1 (Theorem 3.12). However since G∆i itself is a normal subgroup of
G∆i+1 it follows that G∆i = G (∆i+1/∆i). Moreover [G∆i+1 : G∆i ] = [∆i+1 :
∆i] = p and therefore [G∆i+1 : G (∆i+1/∆i)] = p.

The group G∆i+1

G∆i
is a subgroup of the li-fold product of

G∆i+1

G(∆i+1/∆i)
(The-

orem 3.12). Hence G∆i+1

G∆i
is of order pl for some l. As a result we have

#G∆m = [G∆m : G∆m−1 ] . . . [G∆1 : G∆0 ] = a power of p.

The group G∆m is thus a p-group. Furthermore p - [G : G∆m ] (condi-
tion 2d). Therefore G∆m is a p-Sylow subgroup of G. Moreover the group
G∆m = G (Ω/∆m) is also a normal subgroup of G = GΩ (part 1 of Theo-
rem 3.12). Thus we have shown that for every prime p that divides #G the
p-Sylow subgroup is normal. This proves that G is nilpotent.

7.2.1 The nilpotence test

Given f(X) ∈ Q[X] we want to test if the Galois group of f(X) is nilpotent.
If f is reducible then the Galois group of f is nilpotent if and only if the
Galois group of each of its irreducible factors is nilpotent. This is because
nilpotent groups are closed under products and subgroups. Since in polyno-
mial time one can factor polynomials over Q (Theorem 6.7), without loss of
generality we assume that f(X) is irreducible. Let G be the Galois group
of f(X) considered as a subgroup of Sym (Ω), where Ω is the set of roots of
f(X). Since f is irreducible, G is transitive on Ω.

We describe the main idea behind the algorithm. It follows from Theo-
rem 7.14 that G is nilpotent if and only if for all primes p that divide the
order of G, there is a maximal chain of G-blocks {α} = ∆0 ⊂ . . . ⊂ ∆m

satisfying the conditions of part 2 of Theorem 7.14. We do not have access
to the sets ∆i and the groups G∆i . However we prove that conditions in part
2 of Theorem 7.14 can be verified once the fields Q(α) = Q∆0 ⊃ . . . ⊃ Q∆m

are known. Recall that for a G-block ∆, Q∆ is the fixed field of the splitting

99



field Qf under the automorphisms of G∆. Algorithm 11 is the complete
algorithm.

Input: A polynomial f(X) ∈ Q[X] of degree n.
Result: Accepts f if Galois group of f(X) is nilpotent, Rejects

otherwise.
Verify whether f(X) is solvable.

1 Compute the set P of all the prime factors of #Gal (f).
Let G denote the Galois group of f thought of as a permutation
group on Ω, the set of roots of f .

2 foreach p ∈ P do
3 if p does not divide n then Reject.;

Let m be the highest power of p dividing n.
Q∆0 ← Q[X]/f(X).

4 for i← 1 to m do
Using Theorem 7.3 compute the set of fields

F = {QΣ|∆ is a maximal G-block of Σ}.

5 Let QΣ be any field of F such that [QΣ : Q∆i−1 ] = p. If no
such field exists then Reject.

6 if QΣ/Q∆i−1 is not normal then Reject.;
else Q∆i ← QΣ.;

end
Let µ∆m(X) be the primitive polynomial for Q∆m .

7 if p divides #Gal (µ∆m) then Reject. ;

end
Accept.

Algorithm 11: Nilpotence test

Given a polynomial f(X) with solvable Galois group, as a by product of
the Landau-Miller test [39], there is a polynomial time algorithm to compute
the prime factors of #Gal (f) (see also Theorem 7.23). Therefore the steps 1
and 7 of Algorithm 11 can be performed in polynomial time. All other steps
can clearly be performed in polynomial time. This gives us the following
proposition.

Proposition 7.15. Algorithm 11 runs in time polynomial in size (f).

We now argue the correctness of the algorithm in the following two
propositions.

100



Proposition 7.16. Algorithm 11 accepts f(X) if the Galois group of f is
nilpotent.

Proof. Let G be the Galois group of f(X) and let p be any prime that divides
#G. Let Gp be the p-Sylow subgroup of G and let Σα

p be the G-block αGp .
The loop in step 4 in fact constructs the tower of fields QΣαp = Q∆m ⊂ . . . ⊂
Q∆0 = Q(α) for a maximal chain of G-blocks {α} = ∆0 ⊂ . . .∆m = Σα

p .
Lemma 7.13 guarantees that the step 5 will never fail.

The extension Q∆i/Q∆i−1 is normal because G∆i−1 is a normal subgroup
of G∆i . Let K be the normal closure of Q∆m then it follows form Propo-
sition 7.2 that Gal (Qf/K) is G∆m . The Galois group of µ∆m(X) is the
quotient group G

G∆m
. Since G∆m = GΣαp = Gp, p does not divide the order

of the Galois group of µ∆m(X).
Thus no step in the loop 4 will reject the input if the Galois group of f

is nilpotent. This completes the proof.

We now prove the converse.

Proposition 7.17. If Algorithm 11 accepts then the Galois group of f(X)
is nilpotent.

Proof. Let Ω be the roots of f(X) and let G be the Galois group of f(X) as
a permutation group on Ω. Since the algorithm has accepted f(X) we have
the following conditions of the Galois group G of f(X).

1. Every prime p that divides #G also divides n = #Ω. This is verified
in step 3.

2. For any prime p dividing #G let m be the highest power of p dividing
n. There is a maximal chain {α} = ∆0 ⊂ . . . ⊂ ∆m of G-blocks such
that for all 0 ≤ i < m

(a) G∆i is a normal subgroup of G∆i+1 . We verified this in step 6 by
checking that the extension Q∆i+1/Q∆i is a normal.

(b) [∆i+1 : ∆i] = p. This is because [∆i+1 : ∆i] = [Q∆i+1 : Q∆i ] = p
(Proposition 7.2).

(c) The prime p does not divide [G : G∆m ]. As argued before the
Galois group of the polynomial µ∆m , a primitive polynomial of
Q∆m , is the Galois group G

G∆m
. Thus in step 7 we have verified

that p does not divide # G
G∆m

= [G : G∆m ].

Hence from Theorem 7.14, G is nilpotent.

101



Combining Propositions 7.15, 7.16 and 7.17 we have the main theorem
of this section.

Theorem 7.18. Given a polynomial f(X) ∈ Q[X], there is an algorithm
that runs in time polynomial in size (f) that decides whether the Galois group
of f is nilpotent.

7.3 Γd-testing for Galois groups

In this section we show that the technique underlying the Landau-Miller
solvability test can be adapted to efficiently solve a more general problem,
the problem of testing whether the Galois group of a polynomial f(X) ∈
Q[X] is in Γd for constant d. Recall that a group G is in Γd if there is a
composition series G = G0 B . . . B Gt = {1} such that Gi/Gi+1 is either
abelian or isomorphic to a subgroup of Sd. Given a polynomial f(X) over
Q of degree n, we give an algorithm that runs in time polynomial in size (f)
and nd to check whether the Galois group of f is in Γd. For constant d this
yields a polynomial time Γd-test. As a byproduct of our polynomial time
Γd-testing, we obtain a polynomial time algorithm to compute the prime
factors of #Gal (f) for any polynomial f with Galois group in Γd. Note
that for d < 5, Γd is the class of solvable groups and hence our result is a
generalisation of the result of Landau-Miller [39].

We are given a polynomial f(X) overQ. Since the class Γd is closed under
subgroups and quotients and products, without loss of generality assume
that f(X) is irreducible of degree n. For describing the Γd test we fix the
following notation for the rest of this section. Let G be the Galois group
of f . Consider the faithful action of G as a permutation group on Ω, the
set of roots of f . Let {α} = ∆0 ⊂ . . . ⊂ ∆m = Ω be any maximal chain of
G-blocks. Recall that for all 0 ≤ i < m the group G (∆i+1/∆i) is a normal
subgroup of G∆i+1 (Theorem 3.12). We have the following proposition.

Proposition 7.19. The group G is in Γd if and only if the quotient groups
G∆i+1

G(∆i+1/∆i)
, 0 ≤ i < m, are all in Γd.

Proof. The series G = G∆t B . . . B G∆0 = 1 gives a normal series for G.

Hence G is in Γd if and only if for each 0 ≤ i < m the quotient G∆i+1

G∆i

is in Γd. Consider the subgroups G∆i+1 and G (∆i+1/∆i) of G. If G is

in Γd so are G∆i+1 and G (∆i+1/∆i) and hence their quotient
G∆i+1

G(∆i+1/∆i)

(Proposition 3.3). On the other hand, G∆i+1

G∆i
is isomorphic to a subgroup

102



of
(

G∆i+1

G(∆i+1/∆i)

)l
for some l (Theorem 3.12) and therefore G∆i+1

G∆i
is in Γd if

G∆i+1

G(∆i+1/∆i)
is in Γd. Hence G is in Γd if and only if for each 0 ≤ i < m the

quotient group
G∆i+1

G(∆i+1/∆i)
is in Γd.

We have no access to the groups G∆i+1 and G (∆i+1/∆i). However
using Theorem 7.3 we can compute the field Ki = Q∆i , 0 ≤ i ≤ m, for
some maximal chain of G-blocks {α} = ∆0 ⊂ . . . ⊂ ∆m = Ω. Let Li be the
normal closure of Ki−1 over Ki. Using Proposition 7.2 and 7.19 we have the
following proposition.

Proposition 7.20. The Galois group G is in Γd if and only the Galois
groups Gal (Li/Ki), 1 ≤ i ≤ m, is in Γd. Furthermore, if G is in Γd then
the degree [Li : Q] = nO(d).

Proof. The field Li is the fixed field Fix (Qf , G (∆i/∆i−1)) (Proposition 7.2)
and hence the Galois group Gal (Qf/Li) is G (∆i/∆i−1). Moreover the Ga-
lois group of Qf/Q∆i is G∆i and hence by the fundamental theorem of Galois
theory (Theorem 6.1), the Galois group Gal (Li/Ki) is the quotient group

G∆i
G(∆i/∆i−1) . It then follows from Proposition 7.19 that G is in Γd if and only

if each of the Galois groups Gal (Li/Ki) is in Γd.
The block ∆i−1 is a maximal G-subblock of ∆i. Recall that the group
G∆i

G(∆i/∆i−1) acts faithfully as a primitive permutation group on the set of

G-blocks B (∆i/∆i−1) (Theorem 3.12). Moreover if G is in Γd then so is
G∆i

G(∆i/∆i−1) and hence by the Babai-Cameron-Pálfy bound (Theorem 3.10)
we have

[Li : Ki] = #Gal (Li/Ki) = #
G∆i

G (∆i/∆i−1)
≤ [∆i : ∆i−1]O(d) ≤ nO(d)

Therefore [Li : Q] ≤ nO(d).

The above proposition in particular implies that if G is in Γd then the
fields Li can be computed in time polynomial in size (f) and nd. To see
this note that we have computed the explicit data of the fields Ki and Ki−1

which are of size at most a polynomial in size (f). Since the degree of the
normal closure Li of Ki−1 over Ki is bounded by a polynomial in nd, we can
use Landau’s algorithm (Theorem 6.10) to compute the field Li. Thus we
have the following proposition.

Proposition 7.21. If the Galois group G is in Γd then there is an algorithm
that runs in time polynomial in size (f) and nd to compute the fields Li.

103



We now describe the polynomial time algorithm for Γd-testing. The
algorithm first computes the fields Ki in time polynomial in size (f). Let
b(n) be the bound on the size of primitive subgroups of Sn that are in Γd.
By the Babai-Cameron-Pálfy bound we have b(n) = nO(d). For each i, using
Landau’s algorithm (Theorem 6.10), checks whether the degree [Li : Ki] is
at most b(n) and if yes computes it. If any of the degrees [Li : Ki] is greater
than b(n) then clearly G is not in Γd.

Having computed the fields Li and Ki, the Galois groups Gal (Li/Ki)
are explicitly computed using Landau’s algorithm. In time bounded by a
polynomial in nd we verify whether each of the groups Gal (Li/Ki) is in Γd
(this is sufficient because of Proposition 7.20). Algorithm 12 is the complete
algorithm.

Input: An irreducible polynomial f(X) of degree n over Q.
Result: Accept if the Galois group of f(X) is in Γd, Reject

otherwise.
Let G be the Galois group of f(X) as a permutation group on Ω,
the roots of f(X).

Using Theorem 7.3 compute the fields Ki = Q∆i for a maximal
chain of G-blocks {α} = ∆0 ⊂ . . . ⊂ ∆m = Ω.

foreach 1 ≤ i ≤ m do
if [Li : Ki] > b(n) then Reject. ;
else if Gal (Li/Ki) is not in Γd then Reject.;
;

end
Accept.

Algorithm 12: Γd-testing

The main theorem of this section follows.

Theorem 7.22. Given a polynomial f(X) ∈ Q[X], there is an algorithm
running in time polynomial in size (f) and nO(d) that decides whether the
Galois group of f is in Γd.

For any 1 ≤ i ≤ m, we have #G = [Qf : Q] = [Qf : Li].[Li : Ki].[Ki : Q].
Therefore any prime factor of [Li : Ki] divides #G. Conversely G∆i/G∆i−1

is a subgroup of li-fold product of
G∆i

G(∆i/∆i−1) (Theorem 3.12) for some in-

teger li ≥ 0. However by Proposition 7.20
G∆i

G(∆i/∆i−1) = Gal (Li/Ki). It

follows that any prime factor of #G is a prime factor of [Li : Ki] for some
1 ≤ i ≤ m. Therefore the set of primes dividing #G is exactly the set

104



{p|p prime and ∃ 1 ≤ i ≤ m p divides [Li : Ki]}. If the Galois group G is in
Γd, in time polynomial in size (f) and nd we can compute the fields Li and
Ki. As a result we have the following theorem.

Theorem 7.23. Given f(X) ∈ Q[X] with Galois group in Γd there is an
algorithm running in time polynomial in size (f) and nd that computes all
the prime factors of #Gal (f).

7.4 Discussion

We saw that even though computing the Galois group of a polynomial is
hard, certain properties of Galois groups can be efficiently tested. Landau
and Miller showed that solvability is one such property. We have added
nilpotence testing and Γd testing to this list. A group being solvable is
in some sense a “local property”. The solvability of a group G can be
established by looking at the composition series of G. The composition
series considered for G was G = G∆m B . . .BG∆0 = 1 for a maximal chain
of G-blocks {α} = ∆0 ⊂ . . . ⊂ ∆m = Ω. The two-way Galois correspondence
of Theorem 7.1 and Theorem 3.12 ensured that it was sufficient to compute
the fields {Q∆i}0≤i≤m, to infer the solvability of G∆i/G∆i−1 and hence G.
Nilpotence testing cannot be inferred from the composition series. However
Theorem 7.14 together with Theorem 7.1 ensured that the nilpotence of G
can be tested once the tower of fields {Q∆i}0≤i≤m for a suitable maximal
chain of G-blocks {α} = ∆0 ⊂ . . . ⊂ ∆m is computed. In this context an
interesting open problem is to test whether the Galois group of a polynomial
is supersolvable. A group G is supersolvable if there is a normal series
G = G0 B . . . B Gt = 1 such that each of the quotient group Gi/Gi+1 is
cyclic. (see Chapter 10 of Hall’s book [30]). Super solvable groups are a
proper subclass of solvable groups and contain nilpotent groups. However,
it is not clear whether the Landau-Miller solvability test or our nilpotence
test can be adapted to an efficient supersolvability test. Even conditional
results, for example assuming the generalised Riemann hypothesis, would
be interesting.

What about nilpotence and Γd testing Gal (f) for polynomials f(X)
over a number field K? It is not difficult to see that our algorithms can be
generalised. This is because our test require only certain basic algorithms
like factoring of univariate polynomials and gcd computations and efficient
algorithms for these basic tasks over arbitrary number field are known.

105



Chapter 8

Chebotarev density theorem
and Order finding

In this chapter we study the problem of finding the order of the Galois
group of a degree n polynomial f(X) ∈ Q[X] [7]. There is a polynomial
time Turing reduction from computing the order to computing the Galois
group because given a permutation group G ≤ Sn via its generators, the
order of G can be computed in time polynomial in n (Theorem 3.9). In
this chapter we show some conditional results. Assuming the generalised
Riemann hypothesis we show better upper bounds for computing the or-
der than the direct exponential time algorithm that follows from Landau’s
algorithm (Theorem 6.10).

Assuming the generalised Riemann hypothesis, we prove that there is
a polynomial time deterministic algorithm that makes one query to a #P
oracle to compute the order of the Galois group Gal (f) In particular, this
shows that the order can be computed in PSPACE, which was not known
before. Recall that computing the Galois group of a polynomial is not
known to be in PSPACE as nothing better than the EXP upper bound is
known. From the above result, by an application of Stockmeyer’s result on
approximating #P functions, we prove that there is a randomised algorithm
with an NP oracle to approximate the order of the Galois group of f(X).

Our next result is on computing the order of polynomials with Galois
group in Γd. We give a polynomial time reduction from exact computation
to approximate computation of order of Gal (f) for polynomials f(X) with
Galois group in Γd. Therefore assuming the generalised Riemann hypothesis,
there is a randomised algorithm with NP-oracle for computing the order of
Gal (f) exactly for polynomials f(X) with Galois group in Γd.

106



We can assume that the given polynomial f(X) is a monic polynomial
over Z. Otherwise by clearing denominator we can assume that f(X) =
a0 + . . . + anX

n, ai ∈ Z. Consider the polynomial g(X) = a0a
n
n + . . . +

aia
n−i
n X + . . .+Xn. Clearly g(X) is a monic polynomial over Z. Moreover

g(anX) = annf(X). Hence every root of g(X) is of the form anα where α is
a root of f(X). Therefore Qg = Qf . Give f(X) we can compute g(X) in
polynomial time and hence from now on, with out loss of generality, we will
assume that the input polynomial f(X) is a monic polynomial of Z.

The main idea underlying these results is the following: For a positive in-
teger x let Sf (x) denote the number of primes p ≤ x such that f(X) (mod p)
splits completely over Fp. It follows from the Chebotarev density theorem,
which we describe in Section 8.1, that Sf (x) is asymptotically x

#G lnx . Thus
for large enough x, #G is close to x

Sf (x) lnx
. We prove that the function

x 7→ Sf (x) is a #P function. The polynomial time algorithm makes a query
to and #P oracle and computes Sf (x). The effective version of Chebotarev
density theorem guarantees that the order #G is then the nearest integer
to x

Sf (x) lnx
. We now describe the Chebotarev density theorem which plays

a crucial role in our complexity theoretic results.

8.1 Chebotarev density theorem

Let K be any number field and L/K be an extension of K. Recall that the
ring of integers of L, OL, is a Dedekind domain and ideals of OL has the
unique factorisation property. Let p be a prime ideal of OK . The ideal pOL,
which will also be denoted by p, need not be a prime ideal of OL. Let p
factorise as p = Pe1

1 . . .P
eg
g over OL. If L/K is a Galois extension then all

the exponent ei are the same, i.e. e1 = . . . = eg = e. A prime ideal p of OK
is ramified over the extension L/K if e > 1 and unramified otherwise.

We now consider Galois extensions L/K. Let G be the Galois group
of L/K. Consider a prime p of OK that is unramified in L. Let P be any
prime ideal of OL that divides p. Since OL and OK are Dedekind domains it
follows that OL/P and OK/p are finite fields of cardinality N (P) and N (p)
respectively. Furthermore the field OL/P is an extension of OK/p and the
corresponding Frobenius element is given by α(mod P) 7→ αN(p)(mod P).

For P | p there is an element
(
L/K
P

)
of Gal (L/K) such that(

L/K

P

)
α = αN(p) (mod P),

for all α in OL. This element is called the Frobenius element associated with

107



P as its action modulo P matches with the Frobenius element of the finite
field extension OL

P /OKp .
Let P1, . . . ,Pg be the primes of OL that divide p. The Galois group

Gal (L/K) fixes the ideal p and act transitively on the set {P1, . . . ,Pg}. In

particular, if σ ∈ Gal (L/K) maps P1 to P2 then
(
L/K
P2

)
= σ

(
L/K
P1

)
σ−1.

Thus
(
L/K
Pi

)
are all conjugates in Gal (L/K) and the subset FrobL/K(p) of

Gal (L/K) defined by

FrobL/K(p) =

{(
L/K

P

)
: P|p

}
is a conjugacy class of Gal (L/K). Let C be any conjugacy class of G and
let πC(x) denote the function

πC(x) = # {p : FrobL(p) = C and N(p) ≤ x} .

A remarkable result on the asymptotic value of πC(x) is the Chebotarev
density theorem which states that πC(x) ∼ #C

#G
x

lnx . To apply this result in
a complexity-theoretic setting we need the following effective version of the
Chebotarev density theorem due to Lagarias and Odlyzko proved assuming
the generalised Riemann Hypothesis [35].

Theorem 8.1 (Lagarias and Odlyzko). Let L/K be a Galois extension and
C be any conjugacy class of Gal (L/K). Assuming the generalised Riemann
hypothesis we have the following bound for πC(x):∣∣∣∣πC(x)− #C

#G

x

lnx

∣∣∣∣ ≤ O (√x. lnx. ln dL + #C
√
x
)
.

An unramified prime ideal p of K is said to be completely split if the
number of prime ideals P of L that divide p is [L : K]. In this case FrobL(p)
is the singleton conjugacy class containing the identity element. The number
of completely split primes p such that N (p) ≤ x is denoted by π1(x). A direct
consequence of Theorem 8.1 is the following.

Proposition 8.2. Assuming the generalised Riemann Hypothesis we have∣∣∣∣π1(x)− 1

#G

x

lnx

∣∣∣∣ ≤ O (√x. lnx. ln dL) .
We are given a monic polynomial f(X) over Z. For an integer x, using

the Chebotarev density theorem, we estimate the number of primes p ≤ x
for which f(X) (mod p) splits completely over Fp.

108



Theorem 8.3. Given a monic polynomial f(X) over Z with Galois group G
let Sf (x) denote the number of primes p ≤ x such that f(X) (mod p) splits
completely over Fp. Assuming generalised Riemann hypothesis we have∣∣∣∣Sf (x)− 1

#G

x

lnx

∣∣∣∣ ≤ O (√x. lnx.(n!)3.size (f)
)
.

Proof. Let Sf (x) denote the set of all primes p such that f(X) (mod p)
splits completely over Fp. Then Sf (x) = #Sf (x). Let L be the splitting
field Qf . Roots of f(X) are algebraic integers and hence are contained in
OL. Consider any prime p of OL and let p be the prime in Z such that
p ∩ Z = pZ. Then for any root α ∈ OL of f(X), α (mod p) is a root
of f(X) (mod p) in the finite field OL/p. Therefore OL/p is the splitting
field of f(X) (mod p). If p is unramified and splits completely over L then
OL/p = Fp for all p | p and hence f(X) splits completely over Fp. Therefore
all unramified primes p ≤ x that split completely over L/Q are contained in
the set Sf (x).

We now prove that the number of primes p in Sf (x) that are not com-
pletely split are ≤ (n!)3.size (f). Let α1, . . . , αn denote the roots of f(X).
Then there exists an algebraic integer θ =

∑
ciαi such that θ is a primi-

tive element of L and lg dθ ≤ (n!)3size (f) (Theorem 6.19). Let µθ(X) be
the minimal polynomial of θ. Since θ =

∑
ciαi, for any p if f(X) splits

completely over Fp then so does µθ(X). If in addition p does not divide the
discriminant dθ then µθ(X) splits completely into distinct linear terms. It
follows from the Kummer-Dedekind theorem (Theorem 6.3) that p is unram-
ified and splits completely over L/Q. Therefore the primes p ∈ Sf (x) that
are not completely split divide the discriminant dθ. The number of primes
that divide dθ is bounded by lg dθ ≤ (n!)3.size (f) (Theorem 6.19). Hence
the number of primes in Sf (x) that are not completely split over L/Q is less
that (n!)3.size (f)

We have thus proved that π1(x) ≤ #Sf (x) = Sf (x) ≤ π1(x) + lg dθ.
Also dL ≤ dθ. Thus∣∣∣∣Sf (x)− 1

#G

x

lnx

∣∣∣∣ ≤ ∣∣∣Sf (x)− π1(x)
∣∣∣+

∣∣∣∣π1(x)− 1

#G

x

lnx

∣∣∣∣
≤ O

(√
x. lnx.(n!)3.size (f)

)
(Proposition 8.2).

109



8.2 Computing the order of the Galois group

In this section we prove our first result on order computation. We are given
a monic polynomial f(X) over Z. As in the previous section let Sf (x) denote
the number primes p ≤ x such that f(X) splits completely over Fp.

Proposition 8.4. Assuming generalised Riemann hypothesis there exists a
constant c such that for x ≥ c.(n!)10size (f)2k∣∣∣∣#G− 1

Sf (x)

x

lnx

∣∣∣∣ ≤ 1

n!.size (f)k−1
.

Therefore if x ≥ c(n!)10size (f)2 and n ≥ 2, the integer closest to 1
Sf (x)

x
lnx

is #G.

Proof. Let N(x) = 1
Sf (x)

x
lnx . From Theorem 8.3 we have

(1− ε(x))
1

#G

x

lnx
≤ Sf (x) ≤ (1 + ε(x))

1

#G

x

lnx

where ε(x) is O
(

ln2 x.n!3.size(f)√
x

)
. Therefore (1 − ε(x))N(x) ≤ #G ≤ (1 +

ε(x))N(x). It follows that N(x) ≤ #G
1−ε(x) ≤

n!
1−ε(x) . For x = Ω(n!6.size (f)2),

1
1−ε(x) ≤ 1 + 2ε(x). Therefore∣∣∣∣#G− 1

Sf (x)

x

lnx

∣∣∣∣ = |#G−N(x)| ≤ n!ε(x)(1 + 2ε(x)).

There is a constant c such that for x ≥ c.n!10size (f)2k, ε(x) ≤ 1
4n!2.size(f)k−1 .

It follows that for x ≥ c.n!10size (f)2k,
∣∣∣#G− 1

Sf (x)
x

lnx

∣∣∣ is bounded by
1

n!.size(f)k−1 .

Consider the machine M that on input 〈f(X), x〉 guesses a prime p ≤
x and checks whether f(X) splits over Fp. Since in time polynomial in
size (f) and size (p) one can verify whether f(X) completely splits over Fp
(Theorem 6.9), M is an NP machine. The function Sf (x) is the number of
accepting paths of M on input 〈f(X), x〉 and therefore is in #P.

Proposition 8.5. The function 〈f, x〉 7→ Sf (x) is in #P.

110



We now give the FP#P machine M to compute the order of the Ga-
lois group. Given the polynomial f(X) the machine M makes a single
query to the #P function of Proposition 8.5 and computes Sf (x) for x =
c.(n!)10.size (f)2, where c is the constant of Proposition 8.4. Having com-
puted Sf (x) the machine M in polynomial time finds the integer N closest
to 1

Sf (x)
x

lnx . It follows from Proposition 8.4 that N is the order of Gal (f).

Thus we have the following theorem.

Theorem 8.6. Given a polynomial f(X) over Q, assuming the generalised
Riemann hypothesis there is a polynomial time deterministic algorithm with
a #P oracle that computes the order of Gal (Qf/Q).

For an arbitrary function in #P, Stockmeyer proved the following theo-
rem [64].

Theorem 8.7 (Stockmeyer). For every function F in #P and any fixed
constant c there is a randomised polynomial time algorithm with NP oracle
that on input string x of length n computes a value Nx such that(

1− 1

nc

)
Nx ≤ F (x) ≤

(
1 +

1

nc

)
Nx.

Using the above theorem we show that there is a randomised polynomial
time algorithm with NP oracle to approximate the order of the Galois group.

Theorem 8.8. Given a polynomial f(X) over Q there is a randomised
algorithm with an NP oracle that runs in time polynomial in size (f) and
approximates the order of the Galois group of f with a error of at most

1

size(f)O(1) .

Proof. Since Sf (x) is in #P, using the randomised procedure of Theo-
rem 8.7, for any constant k, we can compute a 1

size(f)k
-approximation S̃f (x)

of Sf (x), i.e. compute S̃f (x) such that (1−ε)S̃f (x) ≤ Sf (x) ≤ (1+ε)S̃f (x)
where ε = 1

size(f)k
. Therefore we have

1− ε
Sf (x)

≤ 1

S̃f (x)
≤ 1 + ε

Sf (x)
.

By Proposition 8.4 there is a constant c such that for x ≥ c.n!10size (f)2(k+1)∣∣∣ 1
Sf (x)

x
lnx −#G

∣∣∣ is bounded by 1
n!.size(f)k

. Choosing x = c.n!10size (f)2(k+1)

111



we have ∣∣∣ 1
S̃f (x)

x
lnx −#G

∣∣∣ ≤ ∣∣∣ 1
Sf (x)

x
lnx −#G

∣∣∣+ ε. 1
Sf (x)

x
lnx

≤ 2
n!.size(f)k

+ #G 1
size(f)k

≤ #G 2
size(f)k

.

 (8.1)

The above inequality proves that the integer closest to 1
S̃f (x)

x
lnx is a 2

size(f)k
-

approximation of #G.
We now give the randomised algorithm with NP-oracle to compute an

1
size(f)k

approximation of #G. For x = c.n!10size (f)2(k+1), using Theo-

rem 8.7, the algorithm first computes the approximation S̃f (x) of the #P
function Sf (x). Then compute the integer N closest to 1

S̃f (x)
x

lnx . It follows

from inequality 8.1 that N is a 2
size(f)k

-approximation of #G.

8.3 Computing the order of Galois groups in Γd

Given a polynomial f(X) over Q with Gal (Qf/Q) in Γd, in this section we
show that #Gal (Qf/Q) can be computed by a randomised polynomial-time
algorithm with access to an NP oracle. The algorithm can be seen as a
polynomial time Turing reduction from exact order finding to approximate
order finding. The result then follows from Theorem 8.8.

First we state an important Lemma from Lang’s book [40, Chapter VI,
Theorem 1.12].

Lemma 8.9. Let L/M be a Galois extension and let N be any field that
contains M . Then LN/N is Galois and Gal (LN/N) ∼= Gal (L/L ∩N).
Moreover the map that sends τ ∈ Gal (LN/N) to its restriction on L is an
isomorphism between the Galois groups Gal (LN/N) and Gal (L/L ∩N).

LN

L N

L ∩N

M

112



Using Lemma 8.9 we prove the following theorem on simple Galois ex-
tensions, i.e. Galois extensions L/K such that Gal (L/K) is simple.

Theorem 8.10. Let L/M/N be finite extensions such that L/M is a simple
Galois extension. Let E be a finite Galois extension of N containing M and
let K be the normal closure of EL over N . Then [K : E] = [L : M ]l for
some integer l ≥ 0.

Proof. Let L1, . . . , Lr be the conjugate fields of L over N . Fix r automor-
phisms {σi}1≤i≤r of Gal

(
N/N

)
such that Li = σi(L) and let Mi = σi(M).

First we prove that the Galois group Gal (K/E) embeds into the product
group

∏r
i=1 Gal (Li/Mi). Let Gi be the Galois group Gal (Li/Mi). For any

τ ∈ Gal (K/E) let τi denote the element of Gi obtained by restricting the
action of τ on Li. The homomorphism ψ that maps τ to 〈τ1, . . . , τr〉 is
an embedding from Gal (K/E) to

∏r
i=1Gi. This is because K is the field

EL1 . . . Lr and hence for any τ ∈ Gal (K/E) if τi fixes Li for all 1 ≤ i ≤ r
then it fixes K as well.

Having proved that Gal (K/E) embeds into the product group
∏
Gi we

now prove that the degree [K : E] is a power of [L : M ]. We dispose of the
case when E contains one of the fields Li. Since E is Galois over N , if E
contains Li, it contains all the other conjugate fields Lj and hence K = E.
Therefore when E contains one of the Li, [K : E] = 1 = [L : M ]0.

We now consider the case when E contains none of the fields L1, . . . , Lr.
We prove that in this case the projection map τ 7→ τi from Gal (K/E) to Gi
is onto. It is sufficient to show that for all σ ∈ Gi = Gal (Li/Mi) there is an
automorphism τ in Gal (K/E) such that τi = σ, 1 ≤ i ≤ r.

Since K/E is Galois, every element τ ∈ Gal (ELi/E) can be extended to
an element τ̃ ∈ Gal (K/E) such that τ̃ restricted to ELi is τ ([40, Theorem
2.8, Chapter V]). Therefore, it is sufficient to prove that for any element
σ ∈ Gal (Li/Mi) there is an element τi ∈ Gal (ELi/E) such that τi restricted
to Li is σ.

Consider the extension ELi/E. Since E is Galois and contains M ,
E ⊇ Mi. By Lemma 8.9, Gal (ELi/E) is isomorphic to Gal (Li/Li ∩ E)
via the map that send an automorphism Gal (ELi/E) to its restriction on
Li. The extensions Li/Mi and E/Mi are Galois and hence Li ∩ E/Mi is
also Galois. Therefore Gal (Li/Li ∩ E) is a normal subgroup of Gal (Li/Mi)
(Theorem 6.1). But Gal (Li/Mi) is simple and Li ∩ E 6= Li. Therefore
Li ∩ E = Mi and hence Gal (ELi/E) ∼= Gal (Li/Mi).

For any σ ∈ Gal (Li/Mi), there is an element σi in Gal (ELi/E) such
that σi restricted to Li is σ. Let τ ∈ Gal (K/E) be any automorphism such

113



that τ restricted to ELi is σi. Then τi = σ. As a result we have Gal (K/E)
embeds onto the product group

∏r
i=1 Gal (Li/Mi) via the map τ 7→ τi.

If Li/Mi is a simple abelian extension then Gal (Li/Mi) ∼= Fp and there-
fore Gal (K/E) is isomorphic to a vector space over Fp. Hence [K : E] =
#Gal (K/E) = pl = [L : M ]l for some l. Otherwise if Li/Mi is a nonabelian
simple extension then using Scott’s Lemma (Lemma 3.6), Gal (K/E) is a
product of diagonal subgroups of Gal (Li/Mi) and hence [K : E] = [L :
M ]l.

Given a polynomial f(X) over Q of degree n. If the Galois group of f is
in Γd then we show that the order of the Galois group of f can be computed
by a randomised algorithm with an NP oracle. We first give a sketch of the
algorithm here and defer the detailed description to Algorithm 13. For sim-
plicity we assume that f(X) is irreducible. Algorithm 13 handles reducible
f(X) as well.

For a number field K we denote the normal closure of K over Q by K̃.
Let G be the Galois group of f(X) thought of as a permutation group over
Ω the set of roots of f(X). For a G-block ∆ recall that Q∆ denotes the
fixed field Fix (Qf , G∆). Using Theorem 7.3 repeatedly we can compute the
number fields Ki = Q∆i for maximal chain of G-blocks {α} = ∆0 ⊆ . . . ⊆
∆m = Ω. Recall that the normal closure K̃m and K̃0 are respectively Q and
Qf and #Gal (f) = [Qf : Q]. For i decreasing from m to 0 we compute
the degree [K̃i : Q] inductively. To begin with the degree [K̃m : Q] = 1.
Assuming we have computed the degree [K̃i : Q] we show how the degree
[K̃i−1 : Q] can be computed. Let Li denote the normal closure of Ki−1 over
Ki. Recall that L̃i = K̃i−1 and hence it is sufficient to compute the degree
[L̃i : Q]. Recall that Li/Ki is a Galois extension with small (≤ O(nd)) Galois
group (Proposition 7.20). Hence we can compute the Galois group H =
Gal (Li/Ki) using Landau’s algorithm. Furthermore in time polynomial in
nd we compute a composition series H = H0 B . . . B Ht = 1 for H where
each of the quotient group Hi/Hi+1 is simple. Let Fi denote the fixed field
Fix (Li, Hi). Consider the tower of extensions K̃i = F̃0 ⊆ . . . ⊆ F̃t = K̃i−1.
We have the following proposition

Proposition 8.11. The extension Fj+1/Fj is a simple Galois extension and
the degree [F̃j+1 : F̃j ] is a power of the degree [Fj+1 : Fj ].

Proof. The group Hj+1 is a normal subgroup of Hj such that Hj/Hj+1

is simple. Hence by fundamental theorem of Galois theory, the extension
Fj+1/Fj is a simple Galois extension. Using Theorem 8.10 for the field

114



extensions Fj+1/Fj/Q, the degree [F̃j+1 : F̃j ] is a power of the degree [Fj+1 :
Fj ].

We compute the degree [F̃j : Q] inductively for increasing j. To begin
with [F̃0 : Q] = [K̃i : Q] which we have already computed. Assume that we
already know the degree [F̃j : K̃i]. We can compute a primitive polynomial
h(X) of Fj+1 over Q in time polynomial in size (f) and nd. Using Theo-
rem 8.8 for a suitable small ε (say ε = 0.1) we compute an approximation
A of the degree [F̃j+1 : Q] such that (1 − ε)A ≤ [F̃j+1 : Q] ≤ (1 + ε)A.
We have already computed the degrees [F̃j : K̃i] and [K̃i : Q] and therefore
can compute [F̃i : Q] = [F̃j : K̃i][K̃i : Q]. Therefore A′ = A

[F̃j :Q]
gives an

ε-approximation of [F̃j+1 : F̃j ].
Let r denote the degree [Fj+1 : Fj ] which we have already computed.

Then by Proposition 8.11, [F̃j+1 : F̃j ] is a power of r. Let rl be the power
of r that is closest to A′. Since A′ is an ε-approximation of [F̃j+1 : F̃j ], if
ε < 0.1 then [F̃j+1 : F̃j ] = rl.

Having computed A′, r and [F̃j : Q], it is easy to find [F̃j+1 : F̃j ] and thus
[F̃j+1 : Q]. This completes our description of the algorithm. Algorithm 13
is a detailed presentation.

Algorithm 13 can be seen as a polynomial time Turing reduction from
exact order finding to approximate order finding. The step 1 can be seen
as an oracle query to a function that gives an approximation of the order of
the Galois group. We thus have the following theorem.

Theorem 8.12. For polynomials f(X) with Galois group in Γd there is a
polynomial time (polynomial in size (f) and nd) Turing reduction from exact
order finding to approximate order finding. Hence there is a randomised
algorithm with an NP-oracle to compute the order of Gal (f) for polynomials
f(X) with Galois group in Γd.

8.4 Discussion

In this section we proved upper bounds on order finding for Galois group
assuming the generalised Riemann hypothesis. We proved that computing
the order of the Galois group of a polynomial f(X) is in FP#P. In addition
if the Galois group of f(X) is in Γd, a fact that can be checked efficiently
using Theorem 7.22, then the order of Gal (f) can be computed within the
polynomial hierarchy. We can prove similar results for f(X) ∈ K[X] where
K is give via explicit data.

115



Input: A polynomial f(X).
Output: The order of Gal (f).
if f(X) is a constant polynomial then return 1;
Let f factorise as gh where g is an irreducible polynomial over Q.
Let G be the Galois group Gal (Qg/Q).
Using Theorem 7.3 compute the fields Ki = Q∆i for a maximal
chain of G-blocks {α} = ∆0 ⊆ . . . ⊆ ∆m = Ω.

Recursively compute Nm = [Qh : Q]. Ni will denote the degree
[QhK̃i : Q].

for i← m downto 0 do
Compute the normal closure Li of Ki−1 over Ki.
Compute H = Gal (Li/Ki).
Compute a composition series H = H0 B . . .BHt.
for j ← 0 to t do

Fj ← Fix (Li, Hj)
Compute the primitive polynomial fj(X) of Fj

end

M0 ← 1, Mj will be the degree [QhF̃j : Qh].
for j ← 1 to t do

1 Compute a 0.1-approximation A of #Gal (hfj).
Let r = [Fj : Fj−1].
Compute the power rl closest to A

Mj−1Ni
.

Mj ←Mj−1.r
l.

end
Ni−1 ← Ni.Mt

end
return N0.

Algorithm 13: Computing order of Galois group in Γd.

116



An interesting open problem is to give nontrivial upper bound uncon-
ditionally. Another interesting problem is to give better upper bounds for
order finding for special polynomials, like for example polynomials with solv-
able Galois groups. One way to achieve this is to give better upper bounds
for approximating the order of the Galois group. Certain #P-complete func-
tions like #DNF can be approximated efficiently (Chapter 11 of the book
by Motwani and Raghavan [54] gives a detailed presentation of such #P
complete problems). It would be interesting to know whether the number
of completely split primes less than a given number x can be approximated
efficiently in which case we would have efficient order finding algorithm for
polynomials with Galois group in Γd.

At present computing the Galois group looks harder than computing the
order. It would be interesting to know for example whether the Galois group
can be computed in PSPACE. Even conditional results will be interesting.
For polynomials with solvable Galois group are there better upper bounds ?

117



Chapter 9

Computing Galois groups

In this chapter we give some upper bounds on computing the Galois group
of certain special polynomials. Our first result is a randomised algorithm
to compute the Galois group of polynomials with abelian Galois group [7].
This result makes use of the effective version of the Chebotarev density the-
orem and hences is conditional on the validity of the generalised Riemann
hypothesis. We then consider polynomials f(X) that are product of polyno-
mials {fi}1≤i≤m having the following properties (1) Qfi = Q[X]/fi(X) and
(2) Gal (fi) is simple and nonabelian. We show that in this case there is
deterministic algorithm that runs in time polynomial in size (f) to compute
the Galois group of f . This result is unconditional and Scott’s Lemma plays
a crucial role in the proof of this result. In particular, for this result the
assumption that Gal (fi) is nonabelian is crucial as Scott’s lemma is not true
for abelian simple groups.

Recall that if f(X) is irreducible and has abelian Galois group then
Gal (f) can be computed in polynomial time using Landau’s algorithm (The-
orem 6.12). However, when f(X) is reducible with abelian Galois group, the
Galois group can be exponentially large. Hence Landau’s algorithm cannot
be used directly. In fact even when the polynomial is a product of quadratic
polynomial nothing better than the exponential time algorithm is known
(cf. Lenstra [44]).

For polynomials f(X) with abelian Galois group we give a polynomial
time almost uniform sampling algorithm for elements of Gal (Qf/Q). It is
easy to see that for a group G a random sample of O(lgG) elements from
G is a generator set with high probability.

118



9.1 Computing abelian Galois groups

Given a polynomial f(X) with abelian Galois group. Our task is to compute
the Galois group G of f(X). Let f = f1, . . . , fr be the factorisation of f into
irreducible factors. Let Gi be the Galois group of fi. Each of the groups
Gi can be computed explicitly using Landau’s algorithm. The group G is a
subgroup of the product group

∏r
i=1Gi and projects onto each Gi, i.e. G

embeds into the product group
∏
Gi. Hence any σ ∈ G can be considered

as a tuple σ = 〈σ1, . . . , σr〉 where σi ∈ Gi.
There are two important properties of abelian extensions that we require.

Firstly, each conjugacy class of G is a singleton set. Secondly, by factoring
each of the irreducible factors fi over Fp we can recover the Frobenius ele-
ment associated to p (Proposition 9.2).

Let L denote the splitting field Qf . Recall that for each prime p we can
associate a conjugacy class FrobL/Q(p) (see Section 8.1). Since G is abelian
the conjugacy class FrobL/Q(p) is a singleton set {σp}. We show that for
a given σ ∈ G the probability that σp = σ for a random prime is close
to 1

#G . This follows from the Chebotarev density theorem. Hence picking
primes p at random and recovering the corresponding Frobenius gives us an
almost uniform sampler for elements of G. A polynomial size sample will
then generate G.

Let p be any prime. To recover the Frobenius σp, we recover the cor-
responding Frobenius’ σp,i of Gi. Then σp = 〈σp,1, . . . , σp,r〉. The following
important property of polynomials with abelian Galois group is useful in
recovering the Frobenius element σp.

Lemma 9.1. Let g ∈ Q[X] be an irreducible polynomial of degree d with
abelian Galois group. Let θ be any root of g and let g(X) =

∏d
i=1(X−Ai(θ))

be the factorisation of g over Q(θ) where Ai(X) are polynomial over Q. For
any σ ∈ Gal (Qg/Q) there is a unique index i such that σ maps η to Ai(η)
for any root η (not necessarily θ) of g.

Proof. Let G be the Galois group of g(X). Since g is irreducible and G is
abelian, Qg = Q(θ) and there is a unique automorphism σi that maps θ to
Ai(θ). The automorphisms {σi}di=1 constitutes the group G. Consider any
root η of g. Since G is transitive there is a τ ∈ G such that τ(θ) = η. Now
σi(η) = σiτ(θ) = τσi(θ) since G is abelian. Therefore σi(η) = τ(Ai(θ)) =
Ai(τ(θ)) = Ai(η). Therefore σi maps η to Ai(η).

We now show that given a prime p that does not divide the discriminant
df , the automorphism σp can be recovered efficiently.

119



Proposition 9.2. Given a prime p that does not divide df , there is a ran-
domised algorithm running in time polynomial in size (f) and lg p that com-
putes the Frobenius σp as an r-tuple 〈σp,1, . . . , σp,r〉 where σp,i ∈ Gi is the
Frobenius element corresponding to p for the extension Qfi/Q.

Proof. Fix a root θi of fi(X) over the extension Q[X]/fi(X). Let fi(X)
factorise as

fi(X) =

ni∏
j=1

(X −Aij(θi)).

Compute the Galois group Gi of fi using Landau’s algorithm. Let σij denote
the unique automorphism of Gi that maps θi to Aij(θi). Our task is to
identify which of these is σp,i.

For each i we find the splitting field Fqi of fi over Fp. Since fi is ir-
reducible over Q the order of the Frobenius σp,i divides ni, the degree of
fi. Therefore [Fqi : Fp] divides ni and hence the splitting field is a small
extension (of degree less than the degree of f) over Fp. Let α be any root
of fi(X) in Fqi . In polynomial time find the index j such that αp = Ãij(α)
where Ãij(X) is the polynomial Aij(X) mod p. Since p - df the index j
is unique as there are no multiple roots for fi(X) over Fp. The Frobenius
σp,i = σij .

Having computed σp,i for all 1 ≤ i ≤ r we have σp = 〈σp,1, . . . , σp,r〉.

For our almost uniform sampler we study the distribution of σp for ran-
dom primes p. We show that for a random prime p, the distribution of σp
is almost uniform over G.

Proposition 9.3. Let σ be any automorphism in Gal (Qf/Q). Let Pσ(x)
denote the probability that for an unramified prime p ≤ x picked uniformly
at random σp = σ. Assuming the generalised Riemann hypothesis, there
exists a constant c independent of f(X) such that

1

#G

(
1− 1

n!

)
≤ Pσ(x) ≤ 1

#G

(
1 +

1

n!

)
for all x ≥ c.(n!)10.size (f)2.

Proof. Let L be the splitting field Qf . For an automorphism σ ∈ G let
πσ(x) denote the number of unramified primes p ≤ x such that σp = σ.
By the effective version Chebotarev density theorem (Theorem 8.1) we have∣∣∣πσ(x)− 1

#G
x

lnx

∣∣∣ ≤ O(
√
x. lnx. ln dL). Recall that dL ≤ (n!)3size (f). Also

120



by the prime number theorem, the number of primes less than x is given by
π(x) = x

lnx . Therefore Pσ(x) = πσ(x)
π(x) . It follows that∣∣∣∣Pσ(x)− 1

#G

∣∣∣∣ ≤ O( lnx2.n!3size (f)√
x

)
.

Therefore there is a constant c such that for x ≥ c.(n!)10.size (f)2

1

#G

(
1− 1

n!

)
≤ Pσ(x) ≤ 1

#G

(
1 +

1

n!

)
.

Proposition 9.3 shows that picking random primes and computing σp
gives an almost uniform sampling procedure. That σp can be computed
given p follows from Proposition 9.2. The only missing result is to show
that a polynomial sized sample generates G which we do now.

Lemma 9.4. Let G be any group. Consider a sampling procedure that pro-
duces each element g ∈ G with probability at least 1

λ#G , for some λ > 1. A
sample set of size 4.λ. lg #G where each element is obtained by running the
sampling procedure independently will generate G with probability at least
1

4λ .

Proof. Let N = 4.λ. lg #G and let g1, . . . , gN be the group elements sampled
by running the procedure N times. Let G0 = {1} and let Gi denote the
group generated by {g1, . . . , gi}. Define the random variable Xi as follows.

Xi =

{
1 if Gi−1 6= G and gi ∈ Gi−1

0 otherwise

We have Prob[Xi = 1 | Gi−1 = G] = 0. If Gi−1 6= G then #Gi−1 ≤ 1
2#G.

Therefore the probability Prob[gi 6∈ Gi−1 | Gi−1 6= G] is at least 1
2λ . We

now compute the expectation of the variable Xi.

E[Xi] = Prob[Xi = 1]

= Prob[Gi−1 6= Gi and gi ∈ Gi−1]

= Prob[gi ∈ Gi−1 | Gi−1 6= Gi].Prob[Gi−1 6= Gi]

= 1− Prob[gi 6∈ Gi−1 | Gi−1 6= G]

≤ 1− 1

2λ
.

121



LetX be the random variable
∑N

i=1Xi. The random variableX is always
positive with expectation E[X] =

∑
E[Xi] ≤ N.(1 − 1

2λ). By Markov’s

inequality Prob[X ≥ t] ≤ E[X]
t for all t. Using t = N − lg #G we have

Prob[X ≥ N − log #G] ≤
1− 1

2λ

1− 1
4λ

≤ 1− 1

4λ
.

Consider any sample g1, . . . , gN such that random variable X is less than
N − lg #G. Assume that the random group GN generated by g1, . . . , gN is
different from G. Then Gi 6= G for all 1 ≤ i ≤ n. As a result there are
at least dlg #Ge different indices i such that gi 6∈ Gi−1. At each such i,
#Gi ≥ 2#Gi−1. Hence #GN ≥ G. But Gi’s are all subgroup of G. This
contradicts the assumption that GN 6= G. Therefore if X ≤ N − lg #G− 1
then GN = G. Thus

Prob[GN = G] ≥ Prob[X < N − lg #G]

= 1− Prob[X ≥ N − lg #G]

≥ 1

4λ
.

We are ready to give a randomised algorithm to compute the Galois
group of f(X). The idea is to pick a prime p ≤ x for some sufficiently
large x at random and recover σp using Proposition 9.2. It follows from
Proposition 9.3 that if x ≥ c.(n!)10.size (f)2, an element σ will be obtained
by this sampling procedure with probability at least 1

2#G . Therefore an

8 lg #G ≤ 8n2 sized sample set will generate G with probability at least 1
8 .

Algorithm 14 is the detailed presentation.
We now prove the main result of this section.

Theorem 9.5. Given a polynomial f(X) over Q of degree n with abelian
Galois group. Assuming the generalised Riemann hypothesis there is a ran-
domised algorithm that runs in time polynomial in size (f) and outputs a
strong generator set for Galois group of f with probability 1− 1

2n.size(f)

Proof. Algorithm 14 gives a generator set of G with probability at least 1
8 .

To improve the probability we run Algorithm 14 independently s times to
get subsets A1, . . . , As each of size 8n2. Since Ai’s are picked independently

122



Input: A polynomial f(X) over Q.
Output: Galois group of f(X).
Factorise f into irreducible factors f1, . . . fr.
Let S ← ∅
for i = 1 to 8n2 do

Pick a prime p ≤ c.(n!)10size (f)2 at random.
Recover the σp using Proposition 9.2
S ← S ∪ {σp}

end
return S.

Algorithm 14: Computing abelian Galois group

at random, the probability that none of Ai’s generate G is a at most
(

7
8

)s
.

Hence A = ∪ki=1Ak is a generating set for G with at least 1− (7
8)s. Choosing

s = n.size(f)
lg 8−lg 7 we have the desired result. We can reduce the size of the set A

to n2 by computing a strong generator set for G.

9.2 Computing simple Galois groups

We consider an interesting special case of nonabelian Galois groups com-
putation for which we have a polynomial-time algorithm. Let f(X) be a
polynomial such that f(X) factors as f =

∏r
i=1 fi(X) over Q. Suppose

the Galois group of fi(X) is small (of order bounded by a polynomial in
size (f)), simple and nonabelian. Then there is a polynomial time algorithm
to compute the Galois group of f .

Firstly using Landau’s algorithm the groups Gi = Gal (Kfi/K) can be
computed in time polynomial in size (f) as Gi is of size bounded by a poly-
nomial in size (f). The Galois group G = Gal (Qf/Q) is a subgroup of∏r
i=1Gi. Moreover since the splitting field Qf contains the splitting field

Qfi , the projection from G to Gi is onto. Each of the groups Gi is simple and
non-abelian. Therefore, by Scott’s Lemma (Lemma 3.6), there is a partition
on the set {1, . . . , r} into subsets I1, . . . , Is such that G is given by

G =

s∏
k=1

Diag

∏
j∈Ik

Gj

.
As in Chapter 5 we say that i and j are linked if Gi and Gj belong to the

same partition. In this case G projected to Gi × Gj is the diagonal group.
This implies that i and j are linked if and only if the splitting fields fi and

123



fj are the same. This give a polynomial time algorithm to check whether i
and j are linked: Compute the explicit data for the splitting field Li = Qfi
and factorise fj(X) over Li. The indices i and j are linked if and only if
fj(X) splits completely over Li

The partitions I1, . . . , Is are the equivalence classes of the equivalence
relation ∼ defined by i ∼ j if i linked to j. Since i ∼ j can be checked in time
polynomial in size (f) the equivalence classes {Ik}1≤k≤s can be computed in
polynomial time. Putting it all together we have the following theorem.

Theorem 9.6. Let f(X) ∈ Q[X] be a polynomial such that f = f1f2 . . . fr
where each fi has a non-abelian simple Galois group of size at most N .
Then there is an algorithm that runs in time polynomial in size (f) and N
to compute the Galois group of f(X). In particular if N is bounded by a
polynomial in size (f), there is a polynomial time algorithm for finding the
Galois group of f .

Proof. First factorise the polynomial f into f1, f2 . . . , fn. Compute the Ga-
lois groups Gi = Gal (Qfi/Q) for each 1 ≤ i ≤ n in time polynomial in
size (f) and N using Landau’s algorithm (Theorem 6.10). As described be-
fore equivalence classes {Ik}1≤k≤s can be computed in time polynomial in
size (f) and N . For i and j that are linked, in order to compute the diagonal
group, we need to find the right isomorphism between Gi and Gj . This can
be computed by factoring fj over Qfi . We then output the group

G =
t∏

k=1

Diag

∏
j∈Ik

Gj

,
which is the required Galois group.

9.3 Discussion

As all our results on computational Galois theory, we can prove similar re-
sults for polynomials f(X) over a number field K given by explicit data.
It still remains open whether there is a polynomial time deterministic al-
gorithm to compute the Galois group of a polynomial with abelian Galois
group. Even when f(X) is a product of quadratic polynomials we do not
have polynomial time deterministic algorithm.

For polynomials f(X) with abelian Galois group, each conjugacy class of
G was singleton. Also any prime p that does not divide the discriminant df ,
using Lemma 9.1 we could recover the Frobenius associated to the prime p.

124



These two properties gave us the uniform sampling procedure. However if
the Galois group of f(X) is not abelian we do not have a method to recover
the action of the Frobenius. By factoring f(X) over Fp for different primes
we get only the cyclic structure of element of Gal (f).

Finally, in the absence of any good algorithms, it is of interest to prove
hardness results for Galois group computations.

125



Bibliography

[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P.
Annals of Mathematics, 160(2):781–793, 2004.

[2] Ákos Seress. Permutation group algorithms. Number 152 in Cambridge
Tracts in Mathematics. Cambridge University Press, 2003.

[3] Eric Allender. Arithmetic circuits and counting complexity classes.
Quaderni di Matematica series, 2004. To appear.

[4] Eric Allender, Robert Beals, and Mitsunori Ogihara. The complexity
of matrix rank and feasible systems of linear equations. Computational
Complexity, 8:99–126, 1999.

[5] Eric Allender, K. Reinhardt, and S. Zhou. Isolation, matching, and
counting: Uniform and nonuniform upper bounds. Journal of Computer
and System Sciences, 59:164–181, 1999.

[6] V. Arvind and Piyush P Kurur. Graph Isomorphism is in SPP. In
43rd Annual Symposium of Foundations of Computer Science, pages
743–750. IEEE, November 2002.

[7] V. Arvind and Piyush P Kurur. Upper bounds on the complexity
of some Galois theory problems. In 14th International Symposium on
Algorithms and Computation,ISAAC, volume 2906 of Lecture Notes in
Computer Science, pages 716–725. Springer, 2003.

[8] V. Arvind, Piyush P Kurur, and T. C. Vijayaraghavan. Bounded color
multiplicity Graph Isomorphism is in the #L hierarchy. In 20th Con-
ference on Computational Complexity (CCC 2005), pages 13–27. IEEE,
June 2005.

[9] Lázló Babai. Monte carlo algorithms in graph isomorphism testing,
1979. Universitat de Montreal Tech. Report D.M.S 79-10.

126



[10] Lázló Babai. Bounded round interactive proofs in finite groups. SIAM
Journal of Discrete Mathematics, pages 88–111, 1992.

[11] Lázló Babai, Peter J. Cameron, and P. P. Pálfy. On the order of prim-
itive groups with restricted nonabelian composition factors. Journal of
Algebra, 79:161–168, 1982.

[12] Lázló Babai and Eugene M. Luks. Canonical labeling of graphs. In
Proceedings of the Fifteenth Annual ACM Symposium on Theory of
Computing, pages 171–183, 1983.

[13] José Luis Balcázar, Josep Dı́az, and Joaquim Gabarró. Structural Com-
plexity I, volume 11 of ETACS monographs on theoretical computer sci-
ence. Springer-Verlag, Berlin, 1988.

[14] José Luis Balcázar, Josep Dı́az, and Joaquim Gabarró. Structural Com-
plexity II, volume 22 of ETACS monographs on theoretical computer
science. Springer-Verlag, Berlin, 1990.

[15] David A. Mix Barrington. Bounded-width polynomial-size branching
programs recognize exactly those languages in NC. Journal of Com-
puter and System Sciences, 38(1):150–164, 1989.

[16] E. R. Berlekamp. Factoring polynomials over finite fields. Bell System
Tehcnical Journal, 46:1853–1859, 1967.

[17] E. R. Berlekamp. Factoring polynomials over large finite fields. Math-
ematics of Computation, 24(111):713–735, July 1970.

[18] K S Booth. Isomorphism testing for graphs, semigroups and finite au-
tomata are polynomially equivalent problems. SIAM Journal on Com-
puting, 7:273–279, 1978.

[19] R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interac-
tive proofs, May 1987.

[20] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and
importance of logspace-MOD classes. Mathematical Systems Theory,
25(3):223–237, 1992.

[21] David G. Cantor and Hans Zassenhaus. A new algorithm for fac-
toring polynomials over finite fields. Mathematics of Computation,
36(154):587–592, April 1981.

127



[22] Henri Cohen. A Course in Computational Algebraic Number Theory.
Springer-Verlag, Berlin, 1993.

[23] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the 3rd ACM Symposium on Theory of Computing, pages
151–158, 1971.

[24] John D. Dixon and Brian Mortimer. Permutation Groups. Number 163
in Graduate texts in mathematics. Springer-Verlag, 1991.

[25] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathe-
matics, 17:449–467, 1965.

[26] Stephen A. Fenner, Lance Fortnow, and Stuart A. Kurtz. Gap-definable
counting classes. In Structure in Complexity Theory Conference, pages
30–42, 1991.

[27] Lance J. Fortnow and S. Homer. A short history of computational
complexity. The History of Mathematical Logic, 2003.

[28] Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-
time algorithms for permutation groups. In IEEE Symposium on Foun-
dations of Computer Science, pages 36–41, 1980.

[29] M. Garey and D. Johnson. Computers and Intractability: A guide to
the theory of NP-completeness. W. H. Freeman, 1979.

[30] Marshall Hall Jr. The Theory of Groups. The Macmillan Company,
New York, first edition, 1959.

[31] Richard Karp. Reducibility among combinatorial problems. Complexity
of computer computations, pages 85–104, 1972.

[32] Johannes Köbler, Uwe Schöning, and Jacobo Torán. Graph isomor-
phism is low for PP. Computational Complexity, 2(4):301–330, 1992.

[33] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The Graph Iso-
morphism Problem: Its Structural Complexity. Birkhauser, 1993.

[34] Richard E. Ladner. On the structure of polynomial time reducibility.
Journal of the ACM, 22(1):155–171, 1975.

[35] J. C. Lagarias and A. M. Odlyzko. Effective versions of the Chebotarev
density theorem. In A. Fröhlich, editor, Algebraic Number Fields, pages
409–464. Academic Press, London, 1977.

128



[36] E. Landau. Sur quelques théorèmes de M. Petrovitch relatifs aux zéros
des fonctions analytiques. Bulletin de la Société de France, 33:251–261,
1905.

[37] Susan Landau. Polynomial time algorithms for Galois groups. In John
Fitch, editor, EUROSAM 84 Proceedings of International Symposium
on Symbolic and Algebraic Computation, volume 174 of Lecture Notes
in Computer Sciences, pages 225–236. Springer, July 1984.

[38] Susan Landau. Factoring polynomials over algebraic number fields.
SIAM Journal of Computing, 14:184–195, 1985.

[39] Susan Landau and Gary. L. Miller. Solvability by radicals is in poly-
nomial time. Journal of Computer and System Sciences, 30:179–208,
1985.

[40] Serge Lang. Algebra. Addison-Wesley Publishing Company, Inc, third
edition, 1999.

[41] Arjen K. Lenstra. Factoring polynomials over algebraic number fields.
In Proceedings of the European Computer Algebra Conference on Com-
puter Algebra, pages 245–254, March 1983.

[42] Arjen K. Lenstra, Hendrik W. Lenstra Jr. and László Lovász. Fac-
toring polynomials with rational coefficients. Mathematische Annalen,
261:515–534, 1982.

[43] Hendrik W. Lenstra Jr. Finding isomorphisms between finite fields.
Mathematics of Computation, 56(193):329–347, January 1991.

[44] Hendrik W. Lenstra Jr. Algorithms in algebraic number theory. Bulletin
of the American Mathematical Society, 26(2):211–244, April 1992.

[45] Leonid A. Levin. Universal sorting problems. Problems of Information
Transmission, 9:265–266, 1973.

[46] Eugene M. Luks. Isomorphism of graphs of bounded valence can be
tested in polynomial time. Journal of Computer and System Sciences,
25(1):42–65, 1982.

[47] Eugene M. Luks. Parallel algorithms for permutation groups and graph
isomorphism. In Proceedings of the IEEE Foundations of Computer
Science, pages 292–302. IEEE Computer Society, 1986.

129



[48] Eugene M. Luks. Lectures on polynomial-time computation in
groups. Technical Report NU-CCS-90-16, Northeastern University,
1990. http://www.cs.uoregon.edu/̃ luks/northeasterncourse.pdf.

[49] Eugene M. Luks. Permutation groups and polynomial time computa-
tions. DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, 11:139–175, 1993.

[50] Eugene M. Luks and Pierre McKenzie. Parallel algorithms for solv-
able permutation groups. Journal of Computer and System Sciences,
37(1):39–62, 1988.

[51] Meena Mahajan and V. Vinay. Determinant: Old algorithms, new
insights. SIAM journal on Discrete Mathematics, 12(4):474–490, 1999.

[52] R Mathon. A note on graph isomorphism counting problem. Informa-
tion Processing Letters, 8(3):131–132, 15 March 1979.

[53] Gary L. Miller. Graph isomorphism, general remarks. Journal of Com-
puter and System Sciences, 18(2):128–142, 1979.

[54] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, first edition, 1997.

[55] Jürgen Neukirch. Algebraic Number Theory. Springer-Verlag, 1992.

[56] P. P. Pálfy. A polynomial bound for the orders of primitive solvable
groups. Journal of Algebra, pages 127–137, July 1982.

[57] Omer Reingold. Undirected ST-connectivity in logspace. In Proceedings
of the thirty-seventh annual ACM Symposium on Theory of Computing,
STOC, pages 376–385. ACM, 2005.

[58] W L Ruzzo, J Simon, and M Tompa. Space-bounded hierarchies and
probabilistic computation. Journal of Computer and System Sciences,
28:216–230, 1984.

[59] Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal of
Computer and System Sciences., 37(3):312–323, 1988.

[60] L. L. Scott. Representation in characteristic p. In Santa Cruz Confer-
ence on Finite Groups, pages 319–322. American Mathematical Society,
1980.

130



[61] Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM Journal on
Computing, 26(5):1484–1509, 1997.

[62] C. C. Sims. Computational methods in the study of permutation
groups. Computational problems in Abstract Algebra, pages 169–183,
1970.

[63] C. C. Sims. Some group theoretic algorithms. Topics in Algebra,
697:108–124, 1978.

[64] L. Stockmeyer. On approximating algorithms for #P. SIAM Journal
of Computing, 14:849–861, 1985.

[65] L. J. Stockmeyer. The polynomial hierarchy. Theoretical Computer
Science, 3:1–22, 1976.

[66] Seinosuke Toda. Counting problems computationally equivalent to the
determinant. manuscript, 1991.

[67] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM
J. Comput., 20(5):865–877, 1991.

[68] Jacobo Torán. On the hardness of graph isomorphism. SIAM Journal
of Computing, 33(5):1093–1108, 2004.

[69] Leslie G. Valiant. Relative complexity of checking and evaluating. Inf.
Process. Lett., 5(1):20–23, 1976.

[70] Leslie G. Valiant. The complexity of computing the permanent. Theor.
Comput. Sci., 8:189–201, 1979.

[71] B. L. van der Waerden. Algebra, volume I. Springer-Verlag, seventh
edition, 1991.

[72] V. Vinay. Counting auxiliary pushdown automata and semi-unbounded
arithmetic circuits. In Proceedings of 6th Structure in Complexity The-
ory Conference, pages 270–284, 1991.

[73] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Al-
gebra. Cambridge University Press, first edition, 1999.

[74] Helmut Wielandt. Finite Permutation Groups. Academic Press, New
York, 1964.

131



[75] V. N. Zemlyachenko, N. M. Korneenko, and R. I. Tyshkevich. Graph
isomorphism problem. Journal of Soviet Mathematics, 29:1426–1481,
1985.

132



Index

Γd, 15

algebraic, 74
algebraic closure, 75
algebraic integers, 77
algebraic numbers, 77
alphabet, 7
automorphism

field automorphism, 75
of a graph, 25

Babai-Cameron-Pálfy bound, 19
block, 18
block system, 19

centraliser, 14
characteristic subgroup, 38
Chebotarev’s theorem, 107–109
colour class, 34
coloured graph, 34
composition series, 15
conjugate, 75

blocks, 19

decision problem, 7
degree, 74
diagonal subgroup, 16
direct product, 15
discriminant

of a number field, 77
of a polynomial, 87

embedding

complex embedding, 77
real embedding, 77

empty string, 7
extension

Galois extension, 75
normal extension, 75
of a field, 74
separable extension, 75

fixed field, 76
Frobenius, 76, 107
functional problems, 7

Galois correspondence
of blocks, 19
of fields, 76

Galois group, 75
gap-definable, 11

height, 77

imprimitive, 19
index

of a subgroup, 14
of blocks, 19

irreducible polynomials, 74

Kummer-Dedekind Theorem, 78

language, 7
length of a string, 7
letters, 7
locally residual series, 46
low complexity class, 11

133



lowness, 11

maximal increasing chain, 19
maximal subblock, 19
minimal polynomial, 74

nilpotent groups, 16
norm, 78
normal

series, 16
subgroup, 14
tower, 16

normal closure, 14, 75
number field, 77

O’Nan-Scott theorem, 39
orbit, 17
Orbit-Stabiliser formula, 17

primitive, 19
element, 75
polynomial, 75

pullback, 15

ramified prime, 107
regular action, 17
residual series, 42
residue subgroup, 40

Scott’s Lemma, 16
semidirect product, 15
semisimple, 16

series, 43
sift, 43
simple, 16
socle, 39
solvable group, 15
splitting field, 75
stabiliser

point-wise, 17
setwise, 17

string, 7
strong generator set, 18, 43–45
structure forest, 22
structure tree, 22
subnormal

series, 15
subgroup, 15
tower of groups, 15

supersolvable group, 105
symmetric group, 17

tower of groups, 15
transitive, 18
traversal, 18

134


