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Abstract

In this article, we discuss various algorithms for permutation group
theoretic problems and study its close connection to the graph isomor-
phism problem. Motivated by this close connection, the last part of this
article explores the group representability problem and mention some open
problems that arise in this context.
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1 Introduction

One of the core ideas in mathematics is the notion of an isomorphism, i.e. struc-
ture preserving bijections between mathematical objects like groups, rings and
fields. A natural computational question is to decide, given two such objects as
input, whether they are isomorphic or not. In the context of undirected finite
graphs, this problem is called the graph isomorphism problem and is the subject
matter of this article. Informally, we say that two graphs are isomorphic if they
are the same up to a renaming of their vertices, i.e. we have a bijection between
the vertex sets that preserve the adjacency relation of edges. Many other iso-
morphism problems for explicitly presented finite mathematical structures like
groups, for example, reduce to the graph isomorphism problem. Also, many
problems that arise in practice, like studying the structure of chemical com-
pounds, are essentially graph isomorphism in disguise. Hence, understanding
this problem computationally is important.

There are efficient programs and libraries (see NAUTY for instance) that
can solve large instances of graph isomorphism that arise in practice. However,
there are no known polynomial-time algorithm for the general case. In complex-
ity theory, ever since the notion of NP-completeness has been formalised, the
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graph isomorphism problem has had an important status as it is believed to be
a natural example of a problem of intermediate complexity [12, Chapter 7], i.e.
neither in P nor NP-complete: It is know that the graph isomorphism problem
is in the complexity class co-AM [5], a randomised version of co-NP, and its NP
hardness will result in the collapse of the polynomial hierarchy [5, 24]. Further-
more, Köbler et al. [15] showed that graph isomorphism is low for the counting
class PP by showing its membership in LWPP. This was further improved by
Arvind and Kurur [1] to SPP. As a result graph isomorphism is in and low for
various counting complexity classes like classes like ⊕P etc. Thus, under rea-
sonable complexity theoretic assumptions, graph isomorphism is not NP-hard.
Ladner [18] proved the existence of an infinite hierarchy of problems of interme-
diate complexity assuming that P is different from NP. The graph isomorphism
problem, for reasons stated above, is believed to be a natural example.

In this article, we study graph isomorphism and related problems. There is
now a vast literature on graph isomorphism and we really cannot do justice to
the topic in such a short article. For a detailed study of graph isomorphism,
mainly from a complexity theoretic view point, we refer the reader to the excel-
lent book by Köbler et al. [16]. This paper concentrates on one of the aspects of
the graph isomorphism problem, namely its intimate connection to permutation
group algorithms. Permutation groups arise in the study of graph isomorphism
problem because of its close relation to the graph automorphism problem. For a
graph X, the automorphisms, i.e. isomorphisms from X to itself, forms a group
under function composition. We can identify this group as a subgroup of the set
of all permutations of the vertex set V (X). Automorphisms, thus are symme-
tries of the graph. The computational problem of computing a generating set of
the automorphism group is equivalent to the graph isomorphism problem [22].
Most algorithms for graph isomorphism that make use of permutation group
theory makes use of this connection. Understanding the automorphism group
of a graph is also in tune with what is now a guiding principle in much of modern
mathematics: understanding objects by understanding their symmetries.

2 Preliminaries

We briefly review the group theory required for this article mainly to fix notation
and convention. For details please refer any standard book on group theory, for
example Marshall Hall [13]. The trivial group that contains only the identity
is denoted by 1. For a group G, we use the notation H 6 G (or G > H) to
denote that H is a subgroup of G. The right coset of the subgroup H of G
associated with an element g ∈ G is the set Hg = {hg|h ∈ H}. The set of
all right cosets form a partition of G and any subset T of G that has a unique
coset representative from each right coset is called a right transversal of H in
G. Analogously, we define left cosets and left transversals. In general, the right
coset Hg and the left coset gH are different. We say that H is a normal subgroup
if gH = Hg. We use the notation H E G (or G D H) to denote that H is a
normal subgroup of G.
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A simple group is a group that has no nontrivial normal subgroups. A
composition series of a group G is a tower of subgroups G = G0DG1D. . .DGt =
1 such that each of the factor groups Gi/Gi+1, called the composition factors, are
simple. The Jordan-Hölder theorem states that for any group G, its composition
series is essentially unique, i.e. any two composition series are of equal length
and the list of composition factors are equal up to a reordering. Solvable groups
are those whose composition factors are abelian.

The set of all permutation of n elements forms a group called the symmetric
group which we denote by Sn. In algorithmic settings, it is often useful to make
the domain of n elements explicit: For a finite set Ω, the set Sym (Ω) denote
the group of permutations on Ω. By a permutation group on Ω we mean a
subgroup of the symmetric group Sym (Ω). As is customary, we use Wielandt’s
notation [28]: Let α be any element of Ω and let g be a permutation in Sym (Ω),
the image of α under g is denoted by αg. The advantage of this notation is that
it follows the familiar laws of exponentiation: (αg)h = αgh. We can extend this
notation to (i) subsets of permutations: αA = {αg|g ∈ A}, or to (ii) subsets of
Ω: Σg = {αg|α ∈ Σ}. In particular, for a permutation group on Ω, the set αG

is called the G-orbit of α. Given any two elements α and β of Ω the G-orbits
αG and βG are either disjoint or are the same. Thus, orbits of G partition the
underlying set Ω. A subset Σ of G is said to be G-stable if Σg = Σ. Clearly any
G-orbit is G-stable. In general, a G-stable set is a union of G-orbits.

Let G be a permutation group acting on the set Ω and let Σ be a subset of
Ω. The point-wise stabiliser of Σ is the subgroup of all g in G that is trivial on
Σ, i.e. αg = α for all α in Σ. The setwise stabiliser is the subgroup that fixes
the set Σ as a whole, i.e it is the subgroup of all g in G such that Σg = Σ.

A permutation group G is said to be transitive if the entire set Ω is a single
orbit. Equivalently, G is transitive if for any two elements α and β in Ω there is
a permutation g in G such that αg = β. For a transitive permutation G on Ω, a
subset Σ is said to be a G-block if for any permutation g in G, the set Σg is either
identical to or disjoint from the set Σ. Any singleton set is a block and so is
the entire set Ω. These blocks are called the trivial blocks of G. For a transitive
permutation group G on Ω and a permutation g in G, the set Σg is a G-block
whenever Σ itself is one. Such a block Σg is called a conjugate block of Σ. The
family of conjugate blocks {Σg|g ∈ G} forms a partition of the set Ω which is
called the block system associated with the block Σ. A permutation group that
has no nontrivial block is called a primitive permutation group. An example of
a primitive group is the group Sym (Ω). We have the following lemma about
block systems which is more or less direct from the definition.

Lemma 2.1. Let G be a transitive permutation group on Ω and let Σ be a
block. Let N denote the subgroup of G that setwise stabilises all the elements
in the Σ-block system B(Σ) = {Σg|g ∈ G}. Then N is a normal subgroup of G
and G/N acts as a permutation on Σ-block system B(Σ). In addition, if Σ is a
maximal G-block then this action of the group G/N is primitive.

In algorithms that deal with permutation groups, we need a succinct way to
encode them which we now describe. Any permutation of Ω can be presented by
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an array of #Ω elements and hence can be encoded as a string of size O(n lg n).
A permutation group is presented via a list of permutations that generate the
group. It is a well known fact that any group G has a generating set of size less
than dlg #Ge and hence this presentation of permutation group is reasonable.
Thus, we assume that the input size, for an algorithm that takes a generating
set S of a permutation group G on Ω, is #S + #Ω. Similarly, an algorithm
that is expected to produce a permutation group as output, should output a
generating set of size polynomial in #Ω. For example, the strong generating set
that we describe in the next section, is of size at most #Ω2.

By a graph we mean an undirected graph, i.e. a finite set of vertices and
an edge set which is a subset of unordered pairs of vertices. We use V (X) and
E(X) to denote the set of vertices and the set of edges of a graph X respectively.
A bijection f from V (X) to V (Y ) is an isomorphism if for every two vertices u
and v of X, the unordered pair {u, v} is an edge of X if and only if {f(u), f(v)}
is an edge of Y . An automorphism of a graph X is an isomorphism from the
graph to itself. The set of automorphism of a graph X, denoted by Aut (X),
form a group under composition. In fact, Aut (X) is a permutation group on
V (X).

In the article, we assume that a graphs of n vertices is encoded as an n2-bit
strings that represent its n × n adjacency matrix. We now define the graph
isomorphism problem

Problem 2.2 (Graph isomorphsim problem). The graph isomorphism problem
(GI for short) is defined as follows: Given two undirected graphs X and Y via
their adjacency matrix, decide whether they are isomorphic.

The counting version of the graph isomorphism problem, denoted by #GI,
is the problem of computing the number of isomorphism between the two input
graphs (0 when they are not isomorphic).

Graph isomorphism problem is closely related to the automorphism problem
that we define next.

Problem 2.3 (Automorphism problem). The automorphism problem (AUT
for short) is the problem of computing a strong generating set of the automor-
phism group Aut (X) of an input graph X.

Mathon [22] proved that the problems GI, #GI and AUT are all polynomial-
time Turing reducible to each other. Therefore, in the setting of permutation
group algorithms, it is often the automorphism problem that is attacked for
solving graph isomorphism.

A graph X is said to be rigid if it has no nontrivial automorphism, i.e. if
Aut (X) is the trivial group. We now define the graph rigidity problem.

Problem 2.4 (Graph rigidity problem). Given an input graph X via its adja-
cency matrix, check whether the graph is rigid.

Clearly, an oracle for the automorphism problem, or by Mathon’s result [22],
the graph isomorphism problem, is sufficient to decide the rigidity of a graph.
However, the other direction is open.
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Open problem 2.5. Is the graph rigidity problem polynomial-time equivalent
to the graph isomorphism problem.

An important variant of graph isomorphism is the isomorphism of coloured
graphs. For this article, a c-colouring of a graph X, where c a positive integer,
is a map from the vertex set V (X) to the set of integers 1, . . . , c. Given a c-
colouring ψ, the ith colour class is subset ψ−1(i) of V (X). A coloured graph is
a tuple (X,ψ) of a graph X and colouring ψ. We often suppress the colouring ψ
when it is understood from the context and just denote the coloured graph by
X. Given two c-coloured graphs (X,ψ) and (Y, ϕ), an isomorphism f between
the underlying graphs X and Y is a coloured graph isomorphism if it respects
the vertex colours, i.e. for any vertex v of X, ψ(v) = ϕ(f(v)). An automorphism
of a coloured graph is analogously defined. Clearly coloured graph isomorphism
generalises graph isomorphism as we can assume an ordinary graph as 1-coloured
graph. In the other direction, coloured graph isomorphism polynomial-time
Turing reduces to the graph isomorphism problem. The key idea is the following
gadget construction. For a coloured graph X, we construct a new graph X̃ by
first adding, for each colour class i, a long path Li (say of length n+ i+ 1). We
then connect all the vertices of the colour class i to one of the end points of Li.
Given coloured graphs X and Y , any isomorphism between the modified graphs
X̃ and Ỹ forces the vertices in a given colour class of X to be mapped to the
vertices of the same colour class in Y due to the graph gadgets Li. Therefore,
the coloured graphs X and Y are isomorphic if and only if the modified graphs
X̃ and Ỹ are isomorphic. The rigidity problem and the automorphism problem
generalise naturally to coloured graphs as well.

The graph isomorphism problem and the automorphism problem can be de-
fined for directed graphs as well. It turns out that these variants are polynomial-
time Turing reducible to the undirected case. Therefore, in this article, we
mostly concentrate on undirected graph isomorphism. Nonetheless, from the
perspective of the isomorphism problem, there is an important subclass of di-
rected graphs called tournaments that we define below.

Definition 2.6. A directed graph X is a tournament if for every two distinct
vertices u and v, exactly one of the directed edge (u, v) or (v, u) exists in E(X).

The automorphism group of a tournament cannot have a 2-cycle (why?), and
hence has to be of odd order. This forces it to be solvable by Feit-Thompson
theorem [9]. This property has been exploited by Babai and Luks [3] to give
significantly efficient algorithms for tournament isomorphism.

3 Basic polynomial-time algorithms

In this section, we mention some well known polynomial-time algorithms for
permutation group problems. The very first polynomial-time algorithm is the
algorithm to compute the orbits of a permutation group. Let S be a generating
set of the permutation group G then define a relation α →S β if there exists a
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g in S such that αg = β. It is easy to see that the symmetric, transitive closure
of the relation →s gives us all the G-orbits. We can thus compute the orbits
efficiently by computing reachability.

Lemma 3.1. There is a polynomial-time algorithm, which given a generating
set S of a permutation group G on Ω and an α ∈ Ω, computes the orbit αG.

Many permutation group algorithms follows the general scheme of first re-
ducing the problem to the transitive case by finding all the orbits of the group
using the above lemma, and then restricting the group to the orbit. This is
followed by a divide can conquer that is done on the blocks of the transitive
action of the group. Thus, finding the blocks of a transitive permutation group
is a crucial step in various algorithms. Let G be a transitive permutation group
over Ω. Fix any two elements α and β in Ω and consider the graph Xα,β whose
vertices are Ω and edges are {α, β}G. Let Σ be the smallest G-block containing
both α and β then Sim’s observed [25] that vertices in any connected component
C of the graph Xα,β is a G-block in the block system {Σg|g ∈ G} associated
with Σ. By running this algorithm on all pairs one can compute the set of
minimal (as well as maximal) blocks of G-blocks.

Lemma 3.2. There is a polynomial-time algorithm that takes as input the gen-
erating set of a transitive permutation group G on Ω and decides whether G
is primitive or not. If the input group G is not primitive, then it computes a
minimal (or maximal) G-block system.

We already argued that a generating set of a group is a natural way to
present a permutation group. A strong generating set is a special generating set
of a permutation group that makes many computational tasks easy. Consider
a permutation group G on the set Ω. Fix an ordering {α1, . . . , αn} on the set
Ω and let G(i) denote the subgroup of G that fixes the first i elements of Ω,
i.e. the subgroup of all elements g of G such that αgj = αj for all 1 ≤ j ≤ i.

Consider the tower G = G(0) > . . . > G(n−1) = 1 of subgroups of G. Let Ci
be any set of permutations that has exactly one element from each right coset
of G(i) in G(i−1), i.e. Ci is a right transversal of G(i) in G(i−1). Given any
permutation g in G, there is an unique element, say h1, in C1 which is in the
same right coset of G(1) as that of g. It is easy to see that g′ = gh−11 is in
G(1). Continuing this argument with g′ and the group G(1), it is easy to see
that any element g can be expressed as a product h1 . . . hn−1, hi ∈ Ci. In fact,
if the transversals Ci’s are fixed, the above product representation is unique.
Thus, ∪iCi forms a generating set of G which we call the strong generating set
of G. Many computational tasks become trivial once the strong generating set
is calculated. For example, the uniqueness of the product representation of g
shows that the order of the group #G is the product of the sizes

∏
i #Ci.

We now describe the algorithm to compute the strong generating set of a
permutation group that was given in its complete form by Furst et al. [11] based
on ideas from Sims [26]. It is based on the following lemma due to Schreier and
hence it (and similar algorithms) are some times called Schreier-Sims algorithm.
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Lemma 3.3 (Schreier’s Lemma). Let G be a group and H be a subgroup of G.
Let T be any right transversal of H in G that contains 1 as a coset representative.
For each g in G, let g denote the unique coset representative of Hg in T . Let
S be a generating set for G then set

S′ = {ts(ts)−1|t, s ∈ S}

generates the group H

Let S be the generating set of a permutation group G. The main idea of the
algorithm is that once we have a right transversal C1 of G(1) in G(0) = G, we
can use Schreier’s Lemma 3.3 to compute the Schreier generating set for G(1).
We then recursively compute the the strong generating set for G(1). At each
stage of the algorithm, we compute the right transversal Ci+1 and recurse on
the Schreier generating set of G(i+1) obtained in that stage.

The right transversal C1 is computed by starting with the set T0 = 1 and
inductively compute Ti+1 as follows: Ti+1 is the union of Ti and a subset of
TiS such that Ti+1 does not contain any redundant representative of same right
coset of G(1), i.e. Ti+1 does not contain two distinct elements g1 and g2 such
that αg11 = αg21 . If at some point Ti+1 = Ti, we stop the procedure. Since
the set C1 can at most have n elements this procedure has to terminate in
polynomially many steps. The actual algorithm [11] can be significantly more
efficient by computing all the transversals Ci’s simultaneously through a sifting
procedure. We summarise all the polynomial-time solvable tasks that uses the
Schreier-Sims procedure in the following lemma.

Lemma 3.4 (Furst, Hopcroft, and Luks). There are polynomial-time algorithms
for the computational tasks:

1. computing a strong generating set,

2. computing the order of a permutation group,

3. checking the membership of a permutation g ∈ Sym(Ω) in a given permu-
tation group G.

The Schreier-Sims algorithm can be generalised to find the generating set
of a subgroup H of a permutation group G, given indirectly by a membership
oracle, provided the index #G

#H is small. We state this in the next lemma.

Lemma 3.5. There is algorithm that takes as input a permutation group G on
Ω via a generating set S and computes the generating set of a subgroup H of G
given via a membership oracle, i.e. a procedure to test whether a given element
g of G is actually an element of H. The algorithm takes time polynomial in
#S, #Ω and the index #G

#H .

Consider a permutation group G on Ω and let ∆ be any subset of Ω. The
point-wise stabiliser of the set ∆, which we denote by G(∆) is the subgroup of
all elements of G that fix every element of G, i.e. G(∆) = {g|δg = δ, ∀δ ∈ ∆}.
It is easy to see that finding the point-wise stabiliser of any subset of Ω can be
done in polynomial-time by adapting the Schreier-Sims algorithm.
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4 Divide and conquer algorithms for permuta-
tion groups

We now illustrate a general technique that is used in many permutation group
algorithms by giving an algorithm to find the setwise stabiliser for special groups.
Although superficially similar to point-wise stabiliser, computing the setwise
stabiliser is a different ball game. It is at least as hard as graph isomorphism: For
a graph X, consider the group G = Sym (V (X)) acting on the set Ω =

(
V (X)

2

)
.

The automorphism group of the graph X is the set-wise stabiliser of the subset
E(X) of Ω. The setwise stabiliser problem is a variant of a more general problem
which we define below.

Problem 4.1 (Colour preserving subgroup). Let G be a permutation group on
Ω which is partitioned into k-colour classes C = {Ci}ki=1. Compute the subgroup
of G that stabilises each of the colour class Ci, i.e. compute the subgroup {g ∈
G|Cgi = Ci}

The setwise stabiliser problem is the special case when the number of colours
is 2. While we cannot expect a polynomial-time algorithm for this problem in
general without solving the graph isomorphism problem, for special groups, we
can solve the above in polynomial-time. For example, if we know that the
input group G is solvable then we have a polynomial-time algorithm. In fact,
the polynomial-time algorithm of Luks [19] for trivalent graphs uses such a
subroutine as the group that occurs there is a 2-group and hence is solvable.

We now given a sketch of the algorithm, detail of which can be found in the
paper by Luks [19]. To avoid notation clutter we fix an input group G and the
colouring C of Ω. We say that a permutation g preserves colours of all elements
in the subset Σ if for all α ∈ Σ, α and αg are in the same colour class. Let H be
a subgroup of G and Σ an H-stable subset of Ω. We denote CP (H,Σ) to be the
subset of H that preserves the colours of elements of Σ. Our task is to compute
CP (G,Ω). For the divide and conquer algorithm to work, we need to generalise
the problem to cosets of permutation groups: We need to compute CP (Hg,Σ)
for the coset Hg of the subgroup H of G where the set Σ is H-stable. Note that
Σ is not necessarily stabilised by elements of Hg.

The set CP (Hg,Σ) has the following crucial properties which follows more
or less directly from the definitions.

Lemma 4.2. 1. The set CP (H,Σ) is a subgroup of H.

2. The set CP (Hg,Σ) is either empty or is a coset of the group CP (H,Σ).

3. Suppose Σ is the disjoint union Σ1 ] Σ2 both of which are H-stable then
CP (Hg,Σ) = CP (CP (Hg,Σ1) ,Σ2).

It is crucial that CP (Hg,Σ) is a coset (item 2 in the above lemma) because
we can then succinctly represent the set by giving a generating set of CP (H,Σ)
and the coset representative.

We are now ready to give the outline of the divide and conquer algorithm
for computing CP (Hg,Σ).
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Reduction to transitive case Let Σ′ ⊂ Σ be any H-orbit. We first compute
the group CP (Hg,Σ′) which is the transitive case of the above problem.
Let Σ = Σ′]Σ′′. We use the fact that CP (Hg,Σ) = CP (CP (Hg,Σ′) ,Σ′′).

Transitive case For this case H acts transitively on Σ. Let ∆ be a maximal H-
block of H and let B(∆) = {∆1, . . . ,∆k} be the associated block system.
Let N be the normal subgroup of H that fixes all the blocks B(∆) setwise.
Then we have H = ]xNx as a disjoint union of cosets of N . We can
then compute the set CP (Hg,Σ) by taking the union of all the cosets
CP (Nxg,Σ) which are not empty.

If the number of cosets Nx are polynomially bounded then we can compute a
generating set for N using Lemma 3.5. It then amounts to recursively computing
the polynomially many cosets CP (Nxg,Σ) and combining the non-empty ones.
The number of cosets Nx that is considered in the transitive case is the same
as the order of the quotient group H/N . Since the block ∆ that we choose is
the maximal block, the quotient group H/N , as a permutation group on the set
B(∆), is a primitive group (See 2.1). Thus, we need a bound on the size of a
primitive permutation group. While the order of a primitive permutation group
on n elements can be exponential in n, consider the case of the primitive group
Sn for example, for solvable primitive permutation groups, a result by Pálfy [23,
Theorem 1] gives us the polynomial bound we are looking for.

Theorem 4.3 (Pálfy). There are absolute constants C and c such that any
solvable primitive permutation group on Ω is of size less than C ·#Ωc.

The above bound has a generalisation to groups with bounded non-abelian
composition factors: Let Γd denote the class of groups such that each composi-
tion factor is either abelian or is isomorphic to a subgroup of Sd. Babai et al.
[4] generalised the Pálfy’s bound to the class Γd.

Theorem 4.4 (Babai, Cameron, and Pálfy). There are absolute constants C
and c such that for any positive integer d, any primitive permutation group on
Ω in the class Γd is of size less than C#Ωcd.

As a result, the colour preserving subgroup problem is solvable in polynomial-
time for groups that are in the class Γd.

Lemma 4.5. Colour preserving subgroup problem is solvable in polynomial-
time for the class of solvable groups and the class of groups in the family Γd for
constant d.

We now discuss a natural context where the colour stabiliser problem for
groups in the class Γd occurs. Consider the graphs of valence d, i.e. all vertices
are of degree less than or equal to d. Luks [19] gives a polynomial-time algorithm
for this class of graphs by reducing it to the colour preserving subgroup problem
where the input group G is in the class Γd−1. We quickly give a sketch.

Fix the two input graphs graphs X1 and X2. We assume that the graphs are
connected, otherwise we run the algorithm for each pair of connected compo-
nents. Furthermore, we restrict our attention to checking whether X1 and X2
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e1 e2
e

X1 X2

Figure 1: Luks gadget for bounded valence graphs

are isomorphic via an isomorphism that maps a particular edge e1 of X1 to an
edge e2 of X2: We just need to repeat the procedure for all such pairs of edges
to know whether X1 and X2 are isomorphic.

Consider the new graph which we denote by Z which is essentially the disjoint
union of the graph X1 and X2 with an additional edge e that connects the mid
points of e1 and e2 (see figure 4). If d > 2 is the maximum degree of any vertex
in the input graph then Z also has degree bounded by d. Luks algorithm for
bounded valence computes the group subgroup Aut (Z)e of Aut (Z) that maps
the auxiliary edge e to itself. It is clear that the input graphs X1 and X2 are
isomorphic if and only if there is at least one element in Aut (Z)e (and therefore
in any generator set) that flips the edge e. The algorithm then proceeds to
compute the group Aut (Z)e. First the graph Z is layered as follows: Let the
ith layer of Z, denoted by Zi, be the sub graph which contains all the edges (as
well as the end points) at a distance i from the auxiliary edge e. In particular,
the graph Z0 consists of just the edge e and its end points. All automorphisms
of Z that stabilises the edge e has to preserve this layered structure. The group
Aut (Z)e is then computed by inductively computing the groups Gi = Aut (Zi)e.

Inductively, Luks proves that Gi’s are in the class Γd−1 as follows: Let Hi+1

denote the subgroup of Gi that is obtained by restricting elements of Gi+1 on Zi
and let Ki+1 be the associated kernel, i.e. the subgroup of Gi+1 that is trivial
when restricted to Zi. Any vertex u in layer i, i.e. in the graph Zi \ Zi−1, is
connected to at most d − 1 vertices in the layer i + 1 and these vertices have
to be mapped within themselves by elements of Ki+1. Therefore, Ki+1 is a
subgroup of a product of m many copies of the symmetric groups Sd−1 for some
positive integer m. The quotient group Gi+1/Ki+1 is the group Hi+1, which
itself is a subgroup Gi, a group in the class Γd−1. This is possible only if Gi+1

is in Γd−1: Consider any composition series of Gi+1 which passes through the
normal subgroup Ki+1. The composition factors are either composition factors
of Hi or that Ki+1.

Having computed Gi the algorithm computes Gi+1 by computing (1) a gen-
erating set for the kernel Ki+1 and (2) a set of elements of Gi+1 whose restriction
to Gi generates Hi. It is this inductive step that requires the solution of colour
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preserving subgroup problem and luckily the input group (Gi in our case) turns
out to be in the class Γd and hence solvable by the algorithm in Lemma 4.5.
Thus we have the following theorem.

Theorem 4.6 (Luks). Consider the family Gd of graphs whose vertices are of
degree bounded by d. There is a nO(d) algorithm to decide isomorphism of graphs
in Gd.

The current fastest algorithm for graph isomorphism [29] is based on a va-
lence reduction step together with the application of the above theorem of Luks
for bounded valence graphs. Therefore, any improvement on the bounded va-
lence case will improve the state of the art for the general graph isomorphism
problem.

5 Lexicographically least permutations

We now mention some results that make use of the ordering of permutations
induced by the ordering on the domain Ω. Firstly note that a total ordering
on the set Ω gives a total ordering on Sym (Ω): for distinct permutations g
and h, g < h if at the first (in the ordering on Ω) element α in Ω where they
differ, we have αg < αh. We call this ordering the lexicographic ordering on
the permutations. Under this ordering the lexicographically least permutation
is the identity permutation. The first problem that we study is the problem of
computing the lexicographically least element in a coset.

Problem 5.1 (lexicographically least in a coset). Given a permutation group
G on Ω as a set of generators and an arbitrary permutation x on Ω, compute
the lexicographically least element in the coset Gx.

Clearly if x is in G then the coset is the group G itself and the lexico-
graphically least element of the coset is the identity element. We now sketch a
polynomial-time algorithm for this problem.

Let α be the least element of Ω. The set of images of α under permutations
in the coset Gx is given by the set αGx = (αG)x which can be computed easily
once the orbit αG of α is computed. Clearly, the lexicographically least element
of Gx should map α to the least element β of αGx. We can also compute, using
the transitive closure algorithm for orbits, an element x1 in the coset Gx such
that αx1 = β. Therefore the lexicographically least element of Gx is also the
lexicographically least element in the coset Gαx1 as this coset is precisely the
set of elements of Gx that maps α to β. A similar algorithm can be give for left
cosets xG as well. We thus have the following lemma:

Lemma 5.2. Computing the lexicographically least element in a coset can be
done in polynomial-time.

The above lemma is a key step in proving that the graph isomorphism prob-
lem is in the complexity class SPP.
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Definition 5.3 (SPP). For a non-deterministic polynomial-time Turing ma-
chine let gap(M,x) denote the difference in the number of accepting paths and
rejecting paths of M on the input x. A language L is in the complexity class
SPP if there is a polynomial time non-deterministic Turing machine M such
that for all strings x in the language L, the gap(M,x) is 1 and for all strings
not in the language L, gap(M,x) is 0.

Languages in SPP are believed to be of low complexity and are unlikely
to be NP-hard. In particular, any gap definable complexity [10] class not only
contain SPP but also derive no extra computational power with a language in
SPP as oracle, i.e. SPP is low for all these complexity classes. Gap definable
complexity classes [10] are counting classes defined using GapP functions, i.e.
functions that are differences of accepting and rejecting paths of an NP machine,
and contain many common counting complexity class like PP and ⊕P etc.

The main idea involved in the proof is to design a polynomial-time algorithm
A that makes queries to an NP language L with some restriction on the queries
that A makes to L. We design a non-deterministic polynomial time machine M
for L such that for all queries the algorithm A makes, the machine M has at
most one accepting path. Such an oracle machine can be converted to an SPP
algorithm, i.e. an NP machine whose gap function is the characteristic function
of GI, using standard techniques [15].

The base algorithm A is an inductive algorithm that builds the strong gen-
erating set of the automorphism group by computing the group Gi of all auto-
morphisms that fix the first i vertices of the graph. To compute Gi−1 from Gi,
the algorithm has to query the NP-language L which essentially checks, given a
j > i, whether there is an automorphism that maps i to j. The base polynomial-
time machine can then find one such by doing a prefix search. However, we need
to design an NP machine M for L such that for all queries asked by A, there
is at most one accepting path. This we achieve as follows: The algorithm A
also provides to L the generator set of Gi, i.e. queries to L are (encoding of)
pairs 〈S, j〉 where S is a generating set of Gi at the i-th stage. We know that
if there is an automorphism, say g in Gi−1, that maps i to j then the set of
all such automorphisms form the coset Gig. The machine M essentially guess
the automorphism g that maps i to j if it exists and accepts only if g is the
lexicographically least permutation in Gig. Since there is only one such guess
g, we know that for all queries that the algorithm A makes to L the machine
M has at most one accepting path. The SPP result then follows as mentioned
above.

Theorem 5.4 (Arvind and Kurur). The graph isomorphism problem is in SPP.

While computing the lexicographically least element in a coset has an effi-
cient algorithm, consider the following generalisation to a double coset.

Problem 5.5 (Lex-least in a double coset). Given the generating sets of permu-
tation groups G and H on a totally ordered set Ω and an arbitrary permutation
x on Ω, compute the lexicographically least element in GxH.
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The problem of computing the lex-least element in a double coset is inti-
mately connected to the problem of graph canonisation which we define below.

Definition 5.6 (Canonical forms for graphs). Consider the class G(Ω) of all
graphs on the vertex set Ω. A function CF on G(Ω) is a canonical form if it
satisfies the following properties:

1. For every graph X in G(Ω), CF(X) is isomorphic to X.

2. If X and Y are two isomorphic graphs then CF(X) is the same as CF(Y ).

In other words, a canonical form CF picks a unique representative from
each isomorphism class of graphs on Ω. Clearly graph isomorphism is solvable
given a canonisation procedure. Therefore, one way of attacking the graph
isomorphism problem is to give fast canonisation procedure. For many classes
of graphs, Babai and Luks [3] gave an efficient canonisation procedure which
is also currently the best general purpose algorithms. In particular, they were
able to give an O

(
nc logn

)
for tournaments. This canonisation procedure makes

use of the fact that tournaments have a solvable automorphism group. They
also show how Luks’ polynomial-time algorithm for bounded valance [19] can
be modified and extended to a canonisation algorithm with essentially the same
running time.

As opposed to computing the lexicographically least element in a coset,
computing it in a double coset is known to be NP-hard [21, Theorem 5.1] even
when one of the group is solvable. However, in many contexts, particularly
in relation with graph isomorphism and canonisation, we have some freedom
to choose the underlying ordering of the set Ω. Can we reorder the set Ω so
as to make it possible to apply the divide and conquer technique similar to
that of the colour preserving subgroup problem that we saw in the previous
section? Indeed this is the case provided the reordering is “compatible” with
the divide and conquer structure of the group G. Firstly, we need to generalise
the lexicographically least element as follows: Consider an ordering < on Ω.
Let ∆ be a G-stable set. We consider the restriction of the order < on the set
∆. This gives a partial order on elements of permutations, we say that g < h
if for the least δ in ∆ on which g and h differ, we have δg < δh. Under this
restricted ordering there will be multiple lexicographically minimal elements.
We now describe how to build a new ordering ≺ on Ω under which it is feasible
to compute the lexicographically least element of the double coset GxH.

Ordering the orbit Fix an ordering between the G-orbits by picking say the
least element in each of them. If Ω1 and Ω2 are two orbits such that
Ω1 < Ω2 in the above chosen order, then we set every element of Ω1 to
be less than that of Ω2 under the new ordering ≺. The motivation of
this reordering is the following: Let Ω = Ω1 ] Ω2 then computing the
lexicographically least element with respect to the new ordering ≺ can
be done by first computing the lexicographically minimal elements with
respect to the restriction of ≺ on Ω1 and then from them picking the
lexicographically least element with respect to the restriction of ≺ on Ω2.
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Ordering within orbits When G is transitive, we do the reordering with re-
spect to the blocks. We pick a maximal G-block ∆ in a canonical way.
The ∆ block system partition the set Ω so reorder it pretty much the same
way as in the previous case using the ∆ block system instead. If N denotes
the normal subgroup of G that fixes all the blocks in the ∆ block system,
we can recursively find the lex-least elements in double cosets NgxH and
find the minimal ones out of it. If G is in the class Γd, the number of
sub-problems are polynomially bounded by Theorem 4.4.

The above reordering can be formalised in terms of the structure forest of
the group G. The structure forest is the collection of structure trees one for
each G-orbit. For an orbit Σ, the structure tree is a tree where the leaves are
elements of Σ. Each internal node v is associated with a G-block ∆v with the
following properties.

1. For any child u of v, the G-block ∆u is a maximal block contained in ∆v.

2. If {u1, . . . , uk} are the set of children of v then the blocks ∆ui
’s are all

conjugates of each other and partition the parent block ∆v.

This structure forest captures the divide and conquer on G. The elements
of Ω can be reordered once we compute the structure forest of G: The structure
trees are ordered in the order of the least element in them. For each internal
node v and children u1 and u2, u1 ≺ u2 if the least element of the associated
block in u1 is smaller than that of u2 according to the original ordering <. This
will finally give an ordering ≺ on the entire set Ω. Thus, we have the following
theorem (See the survey article by Luks [21] for details).

Theorem 5.7. Given a totally ordered set Ω, permutation groups G and H
on Ω and a permutation x on Ω. Suppose G is in the class Γd then in time
polynomial in n we can compute a new ordering ≤G such that computing the
lex-least element of the double coset GxH can be done in nO(d).

Notice that we do not have any restriction whatsoever on the group H.

6 Structure of primitive groups

In the last two sections, we saw how bounds on the order of primitive permuta-
tion group can be crucial in the runtime analysis of various divide and conquer
algorithms for permutation groups. We now mention how knowing the actual
structure of primitive groups are computationally useful. This section is mainly
motivated by the study of bounded colour class graph isomorphism problem.

Problem 6.1 (Bounded colour class graph isomorphism). Fix a constant b.
Given two coloured graph X and Y such that the number of vertices in any
given colour class is bounded by b decide whether the graphs are isomorphic.
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We abbreviate this problem as BCGIb. This restricted graph isomorphism
problem does have polynomial-time algorithm but what about fast parallel al-
gorithms? Luks [20] answered this question affirmatively by giving a reduction
to a restricted point-wise stabiliser problem and solving it in NC. Further care-
ful analysis by Arvind et al. [2] showed that the problem lies in the ModkL
hierarchy. Together with the hardness for this class [27], we have a fairly tight
classification of this variant of graph isomorphism.

We now explain the overall structure of the algorithm for BCGIb. Both Luks
[20] and Arvind et al. [2] reduce the bounded colour graph isomorphism problem
to a restricted version of point-wise stabiliser problem which we now define.

Problem 6.2 (bounded orbit point-wise stabiliser problem). Given as input a
set Ω, a subset ∆ of Ω and a permutation group G on Ω such that the G-orbits
are all of cardinality bounded by a constant c. Compute generating set of the
point-wise stabiliser subgroup G(∆).

We abbreviate this problem as PWSc. As mentioned before, the above prob-
lem is solvable in polynomial-time. However, in this context, we are interested in
providing a parallel algorithm. What needs to be exploited is that the G-orbits
are bounded and thus G is actually a subgroup of a product of small symmetric
groups, the symmetric groups on each of the G-orbits.

To see the connection of the PWSc and BCGIb isomorphism we consider the
equivalent automorphism problem which we denote by AUTb.

Lemma 6.3 (Luks). The AUTb problem logspace reduces to PWS2b2 problem.

Here is the sketch of this reduction. Let X be the coloured graph and
let C1, . . . , Cm denote the the colour classes into which the vertex set V (X)
is partitioned. The automorphism group is a subgroup of the product group
G =

∏
i Sym (Ci). We expressed the automorphism group Aut (X) as a point-

wise stabiliser of G on its action on a different set Ω that we construct as follows:
Define the set Ci,j to be the set of unordered pairs {u, v} where u ∈ Ci and
v ∈ Cj and let Ei,j be the subset of edges of X between the colour classes Ci
and Cj . Define the set Ωi,j to be the power set of Ci,j then the edge sets Ei,j
are actually points or element of Ωi,j . Consider the natural action of G on the
union Ω = ∪i,jΩi,j and let ∆ be the subset of all the points Ei,j of Ω. It is
easy to see that the point-wise stabiliser of G with respect to the subset ∆ is
actually the automorphism group Aut (X). Notice that each of the set Ωi,j are

G-stable and hence the orbits of G are at most of size 2(b
2).

Both Luks [20] and Arvind et al. [2] then solve the PWSc problem. While
the actual algorithms of Luks [20] and Arvind et al. [2] are fairly technical,
we attempt to explain the essence of the algorithm and the permutation group
theory involved in those results.

The group G in question can be seen as a product of groups G =
∏
iGi where

Gi is the action of G on the ith orbit. For each of the groups Gi, compute a
special normal series Gi = Ni,0 B . . . B Ni,t and let Nk denote the produce∏
iNi,k. The algorithm does a divide and conquer to compute Nk(∆) going one
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level at a time. The base case of this divide and conquer is when the group Ni,s
hits a socle. The socle of a group G is the group generated by the set of all
minimal normal subgroups of G. The main group theoretic result that is used is
the O’Nan-Scott theorem (See the book by Dixon and Mortimer [6] for a proof
of this result) on the structure of the socle of a primitive permutation group
and its point-wise stabiliser.

For the details of the algorithm, we refer the reader to the conference paper
of Arvind et al. [2]. A detailed version is available in the Ph.D thesis of Kurur
[17, Chapter 5]

7 Representation of groups on graphs

In this section, we look at the group representability problem. This problem was
defined and studied by Dutta and Kurur [7] to explore the connection between
graph isomorphism and permutation group algorithms from a representation
theoretic point of view. Representation theory is the study of homomorphisms
from a group to the group GL(V ), the automorphisms of a vector space V . In
the context of graph isomorphism, we would like to understand homomorphisms
between groups and automorphisms of graphs.

Definition 7.1. A representation of a group G on a graph X is a homomor-
phism from the group G to the automorphism group Aut (X) of the graph X.

There is always a trivial representation that sends all the elements of the
group to the identity automorphism. What we are interested in is a non-trivial
homomorphisms. The main problem of interest in this section is the follow-
ing [7].

Problem 7.2 (Group representability problem). Given a group G and a graph
X, decide whether G has a non-trivial representation on X.

The hardness of the problem depends on how the group G is presented.
We assume, unless otherwise mentioned, that G is provided to the algorithm
via a multiplication table. Therefore, one can assume that the input size is
#G+#V (X). In studying its connection to graph isomorphism, we can restrict
the problem in two ways: (1) restrict the groups to come from a natural class
like for example solvable or abelian or (2) restrict the class of graphs to say
planar graphs or trees.

The very first result that we have in this context is the following [7].

Lemma 7.3 (Dutta and Kurur). The graph isomorphism problem is log-space
many-one reducible to the abelian group representability problem.

The main idea behind the proof is the following: Consider an instances of
graph isomorphism where we want to check whether the graphs X and Y are
isomorphic. We assume they are connected and have n vertices. For a prime
p, consider the graph Z which is the disjoint union of p − 1 copies of X and

16



1 copy of Y . Suppose that the group Aut (Z) has a p-cycle say g. Consider
any vertex u of Z such that ug 6= u. It is easy to see that the orbit of u under
the cyclic group generated by g has to have p-elements. Furthermore, if any
two of the elements in this orbit is in the same connected component of Z then
the entire orbit is. If the prime p is chosen to be greater than n then such a
p-cycle necessarily has to permutes the components as each of the connected
components of Z are of cardinality at most n < p. This is only possible if some
copy of X in Z is mapped to the copy of Y and hence X and Y have to be
isomorphic. Conversely, for any prime p, if X and Y are isomorphic, then the
group Aut (Z) has a p-cycle. Thus, to decide whether X and Y are isomorphic,
we need to check the group representability of the additive group of Z/pZ, on
the graph Z for some prime p greater than the number of vertices in X. By
Bertrand’s postulate (it is actually a theorem but the name seems to be stuck)
there is always a prime p between n and 2n which we chose for this purpose.

Notice that for the previous lemma, all we needed is to pick a prime p such
that Aut (X) does not have p-cycle. Recall that tournaments have odd order
automorphism group and hence we have the following result.

Theorem 7.4. Tournament isomorphism is reducible to Z/2Z representability.

In this context, we have the following open problem.

Open problem 7.5. Is graph isomorphism reducible to Z/2Z-representability
(or for that matter any fixed group representability).

What about the other direction, i.e. reduction from representability to iso-
morphism? Dutta and Kurur [7] prove the following result for solvable group
representability.

Lemma 7.6 (Dutta and Kurur). The representability problem for solvable
groups is polynomial-time Turing reducible to graph isomorphism.

For a group G, let G′ be the commutator subgroup. The main idea is the
following group theoretic fact.

Lemma 7.7. A solvable group G is representable on X if and only if there is
a prime p that divides both the orders G/G′ and #Aut (X).

From the above lemma it follows that to check representability for solv-
able groups, all we need is a way to compute the orders #G/G′ and that of
#Aut (X). Clearly the former can be computed easily as the group is presented
as a multiplication table and the latter using an oracle to the automorphism
problem (or equivalently the graph isomorphism problem). We can even assume
that the group is presented as a permutation group because there are efficient
algorithms to compute the commutator subgroup of a permutation group [11,
Theorem 4].

Thus as far as group representability is concerned, as long as we restrict
the problem to solvable groups, we are within the realm of graph isomorphism.
However, even for the simplest of the non-solvable case we do not have a satis-
factory answer:
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Open problem 7.8 (A5 representability problem). Given a graph X decide
whether there is a subgroup of Aut (X) which is isomorphic to the alternating
group of A5.

The importance of A5 here is that it is the smallest example of a non-
solvable group. Since A5 is a simple group, non-trivial homomorphisms from it
to Aut (X) can only be injections.

Torán [27] showed that graph isomorphism is hard for a lot of parallel com-
plexity classes like ⊕L etc. An important open problem in the context of graph
isomorphism is whether it is hard for the complexity class P (under suitable
reductions). If this is the case, it would give evidence that it is unlikely to have
efficient parallel algorithms for graph isomorphism. We would like to pose the
same question for the group representability problem

Open problem 7.9. Is the group representability problem hard for the com-
plexity class P.

Are there reasons to believe that the group representability problem is harder
than graph isomorphism ? We really do not know. However, for the restricted
case of representability on trees, we already have a difficulty. Graph isomor-
phism on trees can be done in polynomial time. In fact, even for planar graphs
isomorphism testing can be done in linear time [14] or, if one is interested in the
space bounded classes, in logarithmic space [8]. In contrast, Dutta and Kurur
[7] proved the following result for representability on trees.

Theorem 7.10 (Dutta and Kurur). The problem of group representability on
trees is Turing equivalent to the problem of testing, given an integer n in unary
and group G via multiplication table, whether there is a non-trivial homomor-
phism to the symmetric group Sn or not.

We call the problem of checking whether a group G has a homomorphism to
Sn as permutation representability problem and is motivated by Cayley’s the-
orem that states that every finite group is a subgroup of a symmetric group.
However, finding the smallest n for which G is a subgroup seems to be hard
although we admit that there are no known hardness result for the above prob-
lem.

8 Conclusion

In this article, we discussed the complexity of some permutation group algo-
rithms and its close connection to graph isomorphism. Most of these algorithms
perform a divide and conquer and it is here the structure of permutation groups
plays a crucial role. Of particular interest are permutation group theoretic
structures like orbits and blocks whose computation allows us to often reduce
the general case to the primitive case. Also in most of these cases the primitive
case is solvable if the group is known to be in some special class like solvable or
Γd. This makes use of bounds on the sizes of primitive groups or, in some cases,
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their explicit structure. We also saw how these classes naturally arose in study
of restricted versions of graph isomorphism. We therefore believe that a better
understanding of permutation groups and is relation to graph isomorphism is
crucial in pinning down the computational complexity of this elusive problem.

References

[1] V. Arvind and Piyush P Kurur. Graph Isomorphism is in SPP. In 43rd

Annual Symposium of Foundations of Computer Science, pages 743–750.
IEEE, November 2002.

[2] V. Arvind, Piyush P Kurur, and T. C. Vijayaraghavan. Bounded color
multiplicity Graph Isomorphism is in the #L hierarchy. In 20th Conference
on Computational Complexity (CCC 2005), pages 13–27. IEEE, June 2005.
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[15] Johannes Köbler, Uwe Schöning, and Jacobo Torán. Graph isomorphism
is low for PP. Computational Complexity, 2(4):301–330, 1992. URL
citeseer.nj.nec.com/obler92graph.html.
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