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Abstract

In this article, we formulate and study quantum analogues of ran-
domized search heuristics, which make use of Grover search [15] to
accelerate the search for improved offsprings. We then specialize the
above formulation to two specific search heuristics: Random Local
Search and the (1+1) Evolutionary Algorithm. We call the resulting
quantum versions of these search heuristics Quantum Local Search and
the (1+1) Quantum Evolutionary Algorithm.

We conduct a rigorous runtime analysis of these quantum search
heuristics in the computation model of quantum algorithms, which, be-
sides classical computation steps, also permits those unique to quantum
computing devices. To this end, we study the six elementary pseudo-
Boolean optimization problems OneMax, LeadingOnes, Discre-
pancy, Needle, Jump, and TinyTrap.

It turns out that the advantage of the respective quantum search
heuristic over its classical counterpart varies with the problem structure
and ranges from no speedup at all for the problem Discrepancy to
exponential speedup for the problem TinyTrap. We show that these
runtime behaviors are closely linked to the probabilities of performing
successful mutations in the classical algorithms.
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1 Introduction

Quantum algorithms are algorithms that can be executed on a quantum
computing device. One of the prominent computational problems which a
quantum algorithm solves more efficiently than classical algorithms is search-
ing in an unordered database. In his seminal work [15, 22], Grover gave an
algorithm which can search in an unordered data base of N elements in time
proportional to

√
N , whereas any classical algorithm requires time propor-

tional to N . When the underlying search space has no structure, Grover
search is known to be optimal [6, 26]. In the last decade, algorithms based
on Grover search have been studied extensively. Many specialized algorithms
have also been studied for problems such as searching [15, 9], Element Dis-
tinctness [23], Minimum-Finding [13] and many others (e.g., [12, 7, 27]).

Although Grover’s algorithm gives a quadratic speedup1 for search, this
is not a universal phenomenon for all computational problems. For example,
Grover search can be thought of as evaluating the Boolean function OR on
N bits. If instead of the OR function we consider the XOR on N bits, a
lower bound of Θ(N) queries is known in quantum setting [2, 5]. Thus, the
actual speedup that can be achieved depends on the problem at hand.

Optimization problems, which are the topic of interest of this paper, have
received much attention in the quantum setting. Using Grover’s algorithm,
Dürr, Heiligman, Høyer, and Mhalla [12] have shown that it is possible to
find the global optimum of a black-box optimization problem on the search
space {0, 1}n in an expected number of O(2n/2) queries, while the classical
complexity is Θ(2n). Moreover, a matching lower bound of Ω(2n/2) for all
possible quantum algorithms exists [26]. In addition, if there is enough
structure in the search space, better bounds can be shown. For example on
general graph-based search spaces, Magniez, Nayak, Roland, and Santha [21,
Theorem 3] have shown that if the Markov chain associated with the random
walk on the space is ergodic, significant improvement in the expected query
complexity is possible provided that the spectral gap is large. Furthermore,
if the underlying quantum random walk is symmetric, better problem-specific
quantum algorithms are available [25, 20].

From the view-point of complexity theory, the model of computation
which allows the formulation of quantum algorithms is a generalization of the
model of computation which allows the formulation of classical randomized
algorithms (just as this model is a generalization of that which allows the
formulation of deterministic algorithms). If we consider the complexity of a
computational problem, then (i) upper bounds on the classical complexity
are also upper bounds on the quantum complexity, (ii) lower bounds on
the quantum complexity are also lower bounds on the classical complexity,

1By quadratic speedup we mean that the order of the runtime of the classical version
of an algorithm is quadratic in the runtime of the quantum version.
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and, most importantly, (iii) in certain settings lower bounds on the quantum
complexity can imply even stricter lower bounds on the classical complexity.

For example, in [1] Aaronson has derived a lower bound of Ω(2n/2/n2)
on the randomized complexity of the problem of finding a local optimum
on the n-dimensional hypercube from an Ω(2n/4/n) bound on its quantum
complexity using the quantum adversary method (cf. [3]). Only later has this
result been improved to Θ(2n/2n1/2) using classical methods of analysis [28].

Another example is given in [19], where the authors show lower bounds
on the length of locally decodable codes with quantum arguments. They
show that the classical algorithm which is allowed to look at two bits (in
order to recover the desired bit of information) is at most as powerful as the
quantum algorithm which is allowed to look only at one bit.

In this light, theoretical work on quantum complexity and runtime anal-
yses of quantum algorithms serve not only the aim of preparing for a bright
(but admittedly as of now only hypothetical) future sporting actual quantum
computers, but also furthers the understanding of the classical complexity
of a problem.

In this work, we consider quantum versions of elitist (1+1) randomized
search heuristics, which, for convenience, we simply abbreviate as RSH s.
RSHs are heuristics that successively generate candidate solutions according
to some distribution depending only on the best solution found so far2. In
the language of evolutionary algorithms, this sampling procedure is called
mutation. In a subsequent selection step, the algorithm decides whether to
replace the current candidate solution by the sampled one.

The optimization problems that we are interested in are pseudo-Boolean
optimization problems: Given a finite search space S, in our case always
the set of all n-bit strings (where n is a positive integer), and an objective
function f from S to R, we want to compute a global optimum (that is,
either a maximum or a minimum) of f . A RSH starts with a candidate
solution x(0) and repeatedly improves the objective value (or fitness) of the
solution by performing the following two steps:

(1) Mutation Generate a new solution y according to a distribution
mut(x) depending on the current solution x;

(2) Selection If the new solution y has better (or possibly equal) fitness
than x then set x := y, otherwise discard y.

Thus, different RSHs differ in the mutation operator, that is, the nature
of the distribution mut(x), and the selection strategy, that is, a partial order
relation on S.

2Actually, the distribution of the candidate solutions might as well depend on the
number of steps already performed by the algorithm. However, in this work we only
regard algorithms with time-homogeneous distributions.
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For example, the mutation operator of Randomized Local Search (RLS)
selects an index i at random and flips the bit xi to get the new candidate
solution whereas the mutation operator of the (1+1) Evolutionary Algo-
rithm (EA) flips each bit xi with probability 1/n. Orthogonally, we can
choose one of the following two selection strategies for each of these algo-
rithms, which we name progressive or conservative selection. Progressive se-
lection accepts new search points of equal or better objective value, whereas
conservative selection only accepts new search points of strictly better objec-
tive value (where better means larger or smaller, depending on whether we
consider a maximization or, respectively, a minimization problem). When-
ever two algorithms are the same except for the selection strategy, we denote
the conservative algorithms by a superscript “ * ”, e.g., RLS and RLS∗ for
the progressive and conservative versions of Randomized Local Search, re-
spectively.

When transferring the concept of RSHs to the setting of quantum com-
puting, we encounter one main difficulty. Clearly, an RSH for a maximization
problem can never move from a solution of higher objective value to a so-
lution of smaller objective value. Hence the Markov processes underlying
these algorithms are not ergodic and far from symmetric. Therefore, the
setting of quantum random walks as in [25, 20, 21] does not apply. More
seriously, all quantum operations apart from measurements are required to
be reversible. This rules out a direct adaptation of the RSH to the quantum
world because it would force us to make a measurement after every mutation
step and perform the selection step based on the outcome of this measure-
ment. Performing a measurement after each mutation amounts to sampling
from the classical distribution associated with the mutation. Hence, such a
version is the restatement of the same classical randomized search heuristic
in terms of quantum operators and measurements and therefore uninterest-
ing. We need to defer the measurements long enough so as to allow quantum
mechanical interference to have an effect on the sampling.

The main idea of our paper is to use quantum probability amplification [10]
to speed up the process of generating a new candidate solution in Step (1)
that is accepted by the selection strategy in Step (2). Instead of picking
a new candidate solution directly from the distribution given by the muta-
tion operator, which is what is done classically, we amplify the probability
of getting a better solution to at least a constant (say 1/2) using quantum
probability amplification (see Section 2). We call this quantum variant of a
RSH a Quantum Search Heuristic (QSH). In particular, we call the quan-
tum variants of RLS and EAs Quantum Local Search (QLS) and Quantum
Evolutionary Algorithms (QEAs). These QSHs can only run on a quantum
computer.

We measure the runtime of a RSH on a given problem by the expected
number of function calls (queries) to f until a global optimum is found. In
the quantum setting, we cannot evaluate the function f for mixed (non-
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classical) quantum states. Instead, for each search point x we construct
a membership oracle associated with f that distinguishes between search
points of higher and of lower fitness than x. We define the runtime of a
quantum algorithm to be the expected number of calls to such membership
oracles for f until a global optimum is found (see Section 4 for details).

For comparing the runtime of a RSH and its quantum counterpart, the
progress probability pRSH(x) plays a central role. This is the probability
of obtaining an acceptable new solution from a candidate solution x by
mutation in the classical setting. That is, assuming the RSH maximizes the
function f , if y is the random variable generated by mut(x) then

pRSH(x) = Pr(f(y) ≥ f(x) ∧ y 6= x)

for the progressive selection strategy and

pRSH(x) = Pr(f(y) > f(x))

for the conservative selection strategy. In the classical setting, a RSH re-
quires in expectation 1/pRSH(x) queries to f in order to make progress in x,
that is, to move from the current solution x to a new solution y. Using
quantum probability amplification, the expected number of queries reduces
to Θ

(
1/
√
pRSH(x)

)
.

The search heuristic Quantum Local Search which we define here is a re-
stricted version of the quantum algorithm by Aaronson [1] which first chooses
Θ(n1/322n/3) search points uniformly at random and then uses Grover search
to determine the optimal initial search point among them. The algorithm of
Aaronson then proceeds exactly like ours. However, our algorithm does not
attempt to optimize on the starting point, because (i) the runtime of such
an optimization would dominate the runtimes of our algorithms by orders of
magnitude for problems with polynomial runtime and (ii) the classical RSHs
we compare to do not attempt to do so either.

To avoid confusion, we want to point out two other streams of work which
might be mistakenly associated with our work but are in fact not related.

First, our results on QSHs and QEAs are significantly different from
that of Quantum Inspired Evolutionary Algorithms (QIEAs) as introduced
in [16]. QIEAs are classical algorithms where the mutation and selection
steps, though classical, are inspired from quantum operations. In contrast,
our mutation process is genuinely quantum and cannot be implemented on
a classical computer.

Second, our algorithms are no attempts to apply genetic programming
techniques to better design quantum algorithms unlike for example the work
of Spector et. al. [24] where the “code” of an ordinary quantum algorithm is
optimized by an evolutionary algorithm. To the best of our knowledge, the
(1+1) QEA investigated here is the first attempt to generalize evolutionary
algorithms to the quantum setting.
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(1+1) EA / (1+1) QEA / (1+1) EA* / (1+1) QEA* /

RLS QLS RLS* QLS*

OneMax Θ(n logn) Θ(n) Θ(n logn) Θ(n)

LeadingOnes Θ(n2) Θ(n2) Θ(n2) Θ(n3/2)

Discrepancy Θ(
√
n) Θ(

√
n) Θ(

√
n) Θ(

√
n)

Needle Θ(2n) Θ(2n) Θ
(

1
2n
nn
)

/ ∞ Θ
(
e
√

n

2n
nn/2

)
/ ∞

Jumpm Θ(nm) / ∞ Θ(nm−1/2) / ∞ Θ(nm) / ∞ Θ(nm/2)/ ∞

TinyTrap Ω(2n/4) / ∞ Θ(1) / ∞ Ω(2n/4) / ∞ Θ(1)/ ∞

Table 1: A runtime comparison between progressive and conservative (*)
RSHs and QSHs on different objective functions.

The theorem “No free lunch” states that no RSH can be good on all
pseudo-Boolean problems. Similarly, the general bound of time Θ(2n/2) for
optimizing an arbitrary pseudo-Boolean function in the black-box model
also applies to QSHs. However, we may ask whether QSHs still experience a
speedup over ordinary RSHs on particular problems. In order to answer this
question, we follow the approaches of [8] and [11] and study the behavior of
QLS and the (1+1) QEA on specific pseudo-Boolean optimization problems.

1.1 Our Results

We give asymptotically tight bounds on the runtimes of QLS and the
(1+1) QEA. For both QSHs, we investigate the progressive and the con-
servative selection strategy. We consider the objective functions OneMax,
LeadingOnes, Discrepancy, Needle, Jumpm, and TinyTrap, which
are defined in Section 6.

Our results are summarized in Table 1. We see that in some cases the
speedup is quadratic or almost quadratic (e.g., conservative (1+1) QEA∗

on Needle and on Jumpm), for other functions there is only a smaller
speedup (polynomial for the conservative algorithms on LeadingOnes, log-
arithmic for all algorithms on OneMax), or no asymptotic speedup at
all (Discrepancy; progressive algorithms on Needle and Jumpm). We
also see that the selection strategy may be crucial for the speedup (Jumpm
and LeadingOnes) even if one of the strategies does not change the run-
time of the classical algorithms (LeadingOnes). We even find an example
(TinyTrap) where the runtime decreases from Ω(2n/4) to Θ(1).

We now give a broad reason for the differences in speedup. The quantum
acceleration does not differ from its classical counterpart in the statistical
nature of the candidate solutions picked on its way to the optimal solution. In
other words, for a fixed trajectory of different search points the probabilities
to take this trajectory coincide for the classical and the quantum algorithm.
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However, the quantum version is faster because it reduces the expected time
required for a successful mutation.

For example, for RLS∗ on LeadingOnes, it is comparatively hard to find
the next search point (that is, the right bit to flip), so there is a substantial
speedup. On the other hand, for Discrepancy it is very easy to find a
better search point: the expected time for improving the objective value is
bounded from above by a constant, and so there is no asymptotic speedup.
In general, the speedup is higher when it is difficult to find a search point
that is accepted by the selection strategy.

Therefore, the gap between the RSHs and the QSHs tends to be larger for
the conservative selection strategy. Again for LeadingOnes, the progress
probability of RLS∗ is 1/n, namely to flip the first zero-bit. Consequently,
the runtime decreases by a factor of Θ(

√
n). On the other hand, in early

steps of a run of RLS (that is, the progressive version) on LeadingOnes,
the progress probability is Θ(1), since flipping any bit after the first zero-bit
results in an accepted candidate solution in this setting. Consequently, there
is no asymptotic speedup at all.

However, this does not necessarily imply that conservative algorithms
are superior. For some problems like Needle and Jumpm, the conservative
selection strategy leads to high or even infinite (the global optimum is never
found) runtimes for both RSHs and QSHs. In this case, the speedup due to
quantum computing is negligible compared to the speedup due to progressive
selection.

Finally, let us briefly discuss the example of TinyTrap where both, the
conservative and the progressive (1+1) QEA, have runtimes bounded from
above by a constant instead of the exponential runtime of their classical
counterparts. This result may seem most impressive. However, it is quite
artificial since the results hold only in expectation but with an exponentially
small probability. In a nutshell, it is based on the following observation about
quantum probability amplification. Consider the search space consisting
only of two elements a and b, where b is defined to be the “optimum”. With
probability p, the initial search point is chosen as a and with probability 1−p
as b. The probability that a mutation in a samples b is set to p2. Then the
corresponding RSH has runtime 1/p (starting in a with probability p and
moving to b after 1/p2 steps in expectation), while the corresponding QSH
has runtime Θ(1) (starting in a with probability p and moving to b after
only 1/p steps in expectation). Thus, the speedup 1/p can be arbitrary
large if we choose p small enough. The function TinyTrap models this
situation on the search space {0, 1}n.

Summing up, we see that quantum search may speed up evolutionary
algorithms in some cases and that there are problems which are substantially
accelerated by quantum search. However, it depends on the specific problem
how much is really gained, and for some problems there is no improvement
in the runtime at all.
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This paper is the sequel of a conference paper by the same authors [18].
The prequel paper only considered the problems OneMax, Discrepancy
and LeadingOnes. By including Needle, Jumpm, and TinyTrap we
are able to demonstrate the impact of different selection strategies, while
the conference version only considered the progressive variant. Also, it did
not include rigorous proofs and formulations, but merely stated informally
that the optimization time of a quantum algorithm should equal

∑
t≤T p

−1/2
t ,

where pt is the progress probability in time step t and T is the number of
steps the algorithm needs. Although this formula captures the intuition, it
is difficult to turn it into a rigid definition. In particular, pt is not a random
variable because it is not always defined. Also, the formula is not well-suited
for computations, and the analyses used in fact slightly different formulas.
Theorem 5.11 of this paper removes this defect.

1.2 Outline

The paper is structured as follows. In Section 2, we review very briefly the
quantum algorithms we need. For the reader not familiar with quantum
computations, it suffices to use Theorem 2.2 as a black box. In Section 3
and Section 4, RSHs and QSHs, respectively, are introduced formally.

In Section 5, we provide tools for analyzing the runtimes of QSHs. In the
standard framework for evolutionary algorithms one query is performed for
each candidate search point x(t), so the runtime is simply the expectation
of the minimal t for which x(t) is a global optimum. Unfortunately, this
framework collapses in the quantum setting, since the number of queries
(calls to the oracle function) needed to produce the next search point is not
constant. Instead, we introduce in Definition 5.4 the notion of progress times,
which is compatible with both the classical and the quantum setting.

In Theorem 5.11, we describe the runtimes of QSHs purely in non-
quantum terms, and in the remainder of Section 5, we prove some lemmas
that are useful for comparing the complexity of a RSH and its corresponding
QSH. Finally, in Section 6 we apply these tools to determine the runtimes of
the introduced QSHs for the problems OneMax, LeadingOnes, Discre-
pancy, Needle, Jumpm, and TinyTrap.

2 Quantum Probability Amplification

In this section, we describe the basics of quantum computation, the Grover
search algorithm, and its reformulation as quantum probability amplification
in a form that is suitable for our purpose. For a detailed presentation, we
refer the reader to any standard text book on quantum computation, e.g. [22].

The most basic unit of information in the quantum setting is a qubit,
which is a unit vector in a 2 dimensional vector space H = C2. To see the
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analogy with classical bits, we fix an orthonormal basis {|0〉 , |1〉}. The first
basis vector |0〉 stands for the classical bit 0 and the second basis vector |1〉
stands for the classical bit 1. However, a qubit can also be in the superposed
state |ϕ〉 = α |0〉+ β |1〉 where α and β are complex numbers satisfying the
relation |α|2 + |β|2 = 1. An n-qubit system is captured by a unit vector in
the n-fold tensor product H⊗n = C2 ⊗ · · · ⊗ C2.

The vector space H⊗n is a 2n-dimensional vector space with orthonormal
basis {|x〉 | x ∈ {0, 1}n}. More generally, if we have a sample space Ω of car-
dinality N in the classical setting, the corresponding object in the quantum
setting is an N -dimensional complex Hilbert space HΩ. A set of orthonormal
vectors of HΩ is fixed and is denoted by {|ω〉 | ω ∈ Ω}. A state of the system
is then a unit vector in HΩ.

Any quantum operation is either an application of a unitary operator or
a measurement. Unitary operations preserve inner products between vectors
and are reversible. The measurement is an irreversible process. We mention
the von Neumann measurement postulate for qubits. If a set of n-qubits∑
αx |x〉 is measured, we obtain the outcome |x0〉 with probability |αx0 |

2.
Furthermore, the state of the original system then collapses to |x0〉, so the
original state is irretrievably lost. So, as far as measurement is considered,
a state is like a distribution in the classical setting. What makes quantum
probability different and thus more powerful than classical computation is
that by combining certain unitary operations with measurement of a lat-
ter state, we can perform a “constructive interference” of good probabilistic
paths. It is the correct use of unitary maps together with the correct timing
of measurement that gives quantum computation its power. Due to lack of
space we leave the details to any standard text book on quantum computa-
tion (c.f. [22]).

We now describe the Grover search algorithm. Let S0 be a subset of S
for which we are given a membership oracle, that is, we are given an oracle
M from S to {0, 1} such that S0 = {x |M(x) = 1}. Our task is to search for
a string in S0 using queries to M . In this setting, we are interested in min-
imizing the number of queries made to M . In an important breakthrough,
Grover [15] gave a quantum algorithm to search for such an element x0 ∈ S0

that makes only
√
|S|/|S0| queries to the oracle M . One needs to, however,

make the oracle M work for quantum states. The standard approach, which
we describe briefly for completeness, is to consider the membership oracle as
unitary operator UM on the n-qubit Hilbert space H = C2⊗

n

defined as

UM |x〉 = (−1)M(x) |x〉 .

One application of this unitary operator UM is considered as a single query
to the membership oracle.

Let N denote the cardinality of the search space S, and let the cardinality
of the set S0 beN0. During initialization, Grover’s quantum search algorithm
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prepares the uniform superposition |ψ0〉 = 1/
√
N
∑

x∈S |x〉. The algorithm
iteratively applies the Grover step, a unitary operator which we denote by G,
to |ψ0〉. Let |ψt〉 denote the state after t applications of G, that is, |ψt〉 =
Gt |ψ0〉. If we choose some appropriate t in O(

√
N/N0) then on measuring

the state |ψt〉 we obtain an element x ∈ S0 with probability bounded from
below by a positive constant. More precisely, if we write the state as |ψt〉 =∑

x∈S αx(t) |x〉, then for t = O(
√
N/N0) we have

∑
x∈S0 |αx(t)|2 is a constant

(say 1/2). The exact form of the Grover step G is not relevant (for details see
the text book of Nielsen and Chuang [22, Chapter 6]) but the crucial point is
that G can be constructed using one application of the unitary operator UM .
Hence the Grover search makes

√
N/N0 queries to the oracle.

Grover search starts with the uniform superposition as a priori there is
no specific reason to prefer one bit string over the other. Instead, if we
start the search algorithm with the state |ψ0〉 =

∑
αx |x〉, then the runtime

will be
√

1/p where p =
∑

x∈S0 |αx|2 is the probability of picking x ∈ S0 if
we would measure the initial state |ψ0〉 directly. This reformulation due to
Brassard et al [10] is often called the quantum probability amplification or
quantum amplitude amplification as a quantum algorithm is able to amplify
the probability by performing just

√
1/p queries in expectation as opposed

to 1/p required by a classical algorithm.
There is a caveat to the Grover search algorithm. One needs to stop

the Grover iteration after Θ(
√
N/N0) steps, for otherwise the probability

of getting a favorable x0 ∈ S0 actually deteriorates. Thus it appears as if
without knowing the count |S0|, or in the case of probability amplification,
the probability p of sampling an x ∈ S0 under the given distribution, one
cannot use Grover search. However, using phase estimation, Brassard et
al [10] gave a way to overcome this difficulty with essentially no change in
the overall runtime. From now on, by quantum probability amplification we
mean this generalized version where we do not need to know the probabilities.

We now explain an important invariant of the Grover search algorithm.
This property is crucial for our results. Even though each Grover iteration
amplifies the probability of finding a solution in S0, for any x0 ∈ S0, the
conditional probability of obtaining x0 given the event that an element of
S0 has been obtained remains unchanged by the algorithm. We sketch the
reason for this. Let H be the Hilbert space of n-qubits, which has as basis
{|x〉 | x ∈ S}. Let HA denote the space spanned by {|x〉 | x ∈ S0}, and
let HB = H⊥A be its orthogonal complement. Consider any vector |ψ〉 =∑

x ax |x〉 in H. Then |ψ〉 = α |ψ〉A + β |ψ〉B where |ψ〉A and |ψ〉B are
the projections of |ψ〉 to HA and HB with their norms normalized to 1,
respectively. It is easy to verify that the normalized projection |ψ〉A is given
by |ψ〉A = 1√

|α|2
∑

x∈S0 ax |x〉 and the amplitudes α and β are given by

|α|2 =
∑

x∈S0 |ax|
2 and |β|2 = 1 − |α|2. The following proposition then

follows from the measurement postulate.
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Proposition 2.1. Consider the probability distribution Dψ on S obtained
by measuring the state |ψ〉. Then

1. the probability to obtain an element from S0, that is, Pr[S0], is |α|2,

2. for |ψ〉A =
∑

x∈S0 γx |x〉, the conditional probability Pr[x|S0] is |γx|2,

where all probabilities and conditional probabilities are with respect to the
distribution Dψ.

Proof. By the measurement postulate, the probability to obtain x ∈ S
is |ax|2. Therefore,

Pr[S0] =
∑
x∈S0

Pr[x] =
∑
x∈S0

|ax|2 = |α|2 .

Similarly, the second statement follows from

Pr[x|S0] =
Pr[x]

Pr[S0]
=
|ax|2

|α|2
= |γx|2 .

Let G be the Grover iteration associated with the solution space S0. For
any vector |ψ〉 = α |ψ〉A + β |ψ〉B the vector G |ψ〉 is a linear combination
α′ |ψ〉A+β′ |ψ〉B for some other constants α′ and β′ such that |α′|2+|β′|2 = 1
(see the analysis of Grover search in Section 6.1.3 of Nielsen’s and Chuang’s
book [22]). It follows from Proposition 2.1 that the conditional probability
Pr[x|S0] does not change after the application of G.

When quantum probability amplification is applied to an initial state
that has success probability p, then it achieves at least a constant success
probability c > 0 with a runtime in Θ(

√
1/p) that is known a priori. Now

we take this algorithm as a black box B. If we consider the algorithm
that repeats B until it finds a solution, then its success probability is 1 by
definition. The runtime is no longer known a priori since we do not know
how often we need to call the black box B. However, the expected runtime
is 1/c times the runtime of B, which is still in Θ(

√
1/p). Summarizing, we

get the following theorem.

Theorem 2.2 (Probability Amplification). There exists two positive abso-
lute constants c and C such that the following statement is true.

Let S be a finite search space, S0 be any non-empty subset of S for which
there is a membership oracle M , and a sampling procedure A that produces
a distribution DA on S. Let p be the probability PrDA [x ∈ S0] of obtaining
an element in S0 on running A. Then there exists a quantum algorithm
that makes in expectation at least cp−1/2 and at most Cp−1/2 queries to the
membership oracle M and samples an element x0 in S0 with a distribution
Dψ on S0 given by

PrDψ [x = x0] = PrDA [x = x0 | x ∈ S0].
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The statement regarding the conditional probability comes from the fact
that the final state of the algorithm is Gt |ψ0〉 and that the Grover operator
G preserves the relevant conditional probability as discussed before.

3 Randomized Search Heuristics

In this section, we look at elitist (1+1) Randomized Search Heuristics, RSHs
for short. The RSHs we study in this article are Random Local Search (RLS)
and the (1+1) Evolutionary Algorithm (EA). Let S be the search space and
let f be a function from S to R that we want to maximize. A RSH like
Random Local Search or the (1+1) EA can be formalized by defining what
is known as its mutation operator.

Definition 3.1 (Mutation Operator mut). Let S be a finite search space. A
mutation operator mut over S is a function from S to the space of probability
distributions on S.

The mutation operator mut is essentially the search strategy of the cor-
responding RSH. With a slight abuse of notation we write mut(x) to denote
a sample from S according to the distribution mut(x).

To any mutation operator mut, we associate a RSH, which starts from
an initial solution x(0), and successively improves by mutating the current
solution according to the probability distribution given by mut. If the new
solution is better than the current one, we discard the current solution and
keep the new solution for further improvement. On the other hand, if the
new solution is worse we discard it and retain the current solution. If the new
solution is of the same fitness as the current solution, we can either choose
to retain the current solution or move to the newly generated solution. We
call the former strategy conservative and the latter progressive. Which of
these two variant is better depends very much on the problem at hand. We
now formalize these two algorithms.

Algorithm 3.2 (RSH). The elitist (1+1) randomized search heuristic (RSH)
over the finite search space S with mutation operator mut that maximizes
the objective function f : S → R is the following iterative algorithm.

1. Start with x(0) ∈ S uniformly at random.

2. For each t ∈ N, iteratively assume that x(t) has been chosen.

(a) Pick y(t) ∈ S according to the distribution mut(x(t)).
(b) Set x(t+1) = y(t) if

• f(y(t)) > f(x(t)) for the conservative selection rule,
• f(y(t)) ≥ f(x(t)) for the progressive selection rule.

Otherwise, set x(t+1) = x(t).

One can define a RSH for minimizing f by changing Step 2b of Algo-
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rithm 3.2. For the conservative selection strategy, we set x(t+1) = y(t) if
f(y(t)) < f(x(t)). For the progressive selection strategy, we set x(t+1) = y(t)

if f(y(t)) ≤ f(x(t)).
Based on this general scheme of a RSH, we define Randomized Local

Search and the (1+1) Evolutionary Algorithm by their corresponding muta-
tion operators.

Algorithm 3.3 (RLS and RLS∗). Randomized Local Search is the RSH on
the search space {0, 1}n for which the mutation operator mutRLS assigns to
the search point x the probability distribution on {0, 1}n obtained by picking
an index 1 ≤ i ≤ n uniformly at random and flipping the i-th bit of x. We
denote the progressive variant of Randomized Local Search by RLS and the
conservative variant by RLS∗.

Algorithm 3.4 ((1+1) EA and (1+1) EA∗). The (1+1) Evolutionary Algo-
rithm is the RSH on the search space {0, 1}n for which the mutation operator
mutEA assigns to the search point x the probability distribution on {0, 1}n ob-
tained by flipping each bit of x independently with probability 1

n . We denote
the progressive variant of the (1+1) Evolutionary Algorithm by (1+1) EA
and the conservative variant by (1+1) EA∗.

4 Quantum Search Heuristics

We now study quantum versions of RSHs. As in the previous section, we
have a search space S and an objective function f : S → R that we want to
maximize. Consider a mutation operator mut. Recall that, in the classical
randomized search heuristic, we successively improve the current solution by
sampling a new solution according to the mutation operator mut and retain-
ing the new solution if it is better than the previous one. In the quantum
version, all the mutation and selection operations needed to find an improved
solution are considered as a single search, and we use quantum probability
amplification to speed up this search: In step k, if x(k) denotes the current
solution, we generate the distribution mut(x(k)), amplify the probability of
getting a better solution using quantum probability amplification and mea-
sure the amplified distribution to obtain a new solution.

The quantum probability amplification requires a membership oracle.
Given the objective function f , we define, for each x ∈ S, membership
oraclesMf,x (progressive version) andM∗f,x (conservative version) as follows.

Mf,x(y) =

{
1 if f(y) ≥ f(x) and y 6= x,
0 otherwise,

and

M∗f,x(y) =

{
1 if f(y) > f(x)

0 otherwise.
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We now define (progressive and conservative) elitist (1+1) Quantum
Search Heuristics (QSHs) associated with a mutation operator mut.

Algorithm 4.1 (QSH). The elitist (1+1) quantum search heuristic (QSH)
over the finite search space S with mutation operator mut that maximizes
the objective function f : S → R is the following iterative algorithm.

1. Start with x(0) ∈ S uniformly at random.

2. For each k ∈ N, iteratively assume that x(k) has been picked. Sam-
ple x(k+1) according to sampling procedure for Theorem 2.2 with search
space S, membership oracleMf,x(k) for progressive andM∗f,x(k) for con-
servative selection, and sampling procedure mut(x(k)). In the case that
the set of possible samples for x(k+1) is empty (that is, the mutation
operator cannot reach a better search point) then set x(k+1) = x(k).

It seems that the condition y 6= x in the oracle function Mf,x does not
have any influence on the algorithm. This is true in so far as the algorithm
would not visit different search points if this condition was dropped. How-
ever, from the runtime analysis in Section 5 it will become clear that there
would be a huge difference in the runtime. In particular, the (1+1) EA has
at least a constant positive probability to sample the current search point
x again. Therefore, the algorithm (1+1) QEA defined below would have
asymptotically exactly the same runtime as the classical (1+1) EA for every
objective function f by Corollary 5.13, so there would be no gain in speed
at all. For the classical version, on the other hand, this changes the runtime
of the algorithm by at most a constant factor which does not influence our
runtime analysis.

We conclude this section by defining the quantum versions of Random-
ized Local Search and the (1+1) Evolutionary Algorithm. Note that these
definitions arise directly from the corresponding mutation operators.

Algorithm 4.2 (QLS and QLS∗). Quantum Local Search is the QSH on the
search space {0, 1}n defined by the mutation operator mutRLS of Randomized
Local Search (Algorithm 3.3). We denote the progressive variant of Quantum
Local Search by QLS and the conservative variant by QLS∗.

Algorithm 4.3 ((1+1) QEA and (1+1) QEA∗). The (1+1) Quantum Evo-
lutionary Algorithm is the QSH on the search space {0, 1}n defined by the mu-
tation operator mutEA of the (1+1) Evolutionary Algorithm (Algorithm 3.4).
We denote the progressive variant of the (1+1) Quantum Evolutionary Al-
gorithm by (1+1) QEA and the conservative variant by (1+1) QEA∗.

5 Runtime Analysis of Quantum Search Heuristics

In this section, we introduce a selection of methods which allow us to link
the runtime of a QSH to the optimization behavior of the corresponding
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RSH. In the first two sub-sections, we develop the basic terminology and
formulas. Afterwards, we present the main theorem (Theorem 5.11), which
expresses the runtime of a QSH by a purely non-quantum parameter of the
corresponding RSH. Moreover, we give tools to relate the runtimes of the
RSH and the QSH if the probability of moving to a new search point in the
next step is bounded (Corollary 5.13), or if it is bounded in certain regions
of the search space, where the time spent in these regions is known for the
classical algorithm (Lemma 5.12). Finally, we derive an alternative charac-
terization of the runtime of a QSH by scaling the transition probabilities of
the Markov chain associated to the corresponding RSH.

For the results of this section we fix a positive integer n and consider the
optimisation of an objective function f on the domain S = {0, 1}n of n-bit
strings. In this section, we fix a mutation operator mut on S and a selection
strategy (either progressive or conservative). By fixing these, recall that the
RSH (Algorithm 3.2) and its associated QSH (Algorithm 4.1) that optimises
f is completely determined.

In the following, whenever a definition or statement applies to both
heuristics, we simply refer to both as the considered search heuristic. In
particular, we use a common mathematical notation for both heuristics and
signify the distinction by the subscripts “RSH” and “QSH” only if needed.
For example, in Definition 5.1 we define the “optimization time T of the
considered search heuristic”. By this, we implicitly define TRSH for the RSH
and TQSH for the QSH.

Our aim is to compare the performance of different search heuristics.
To this end, we assume the query complexity model: The considered search
heuristics are only charged for the number of queries it makes to the objective
function, all other operations are free of cost. Recall that in the case of the
RSH, a query is an evaluation of the objective function f . For the QSH,
a query is an evaluation of the associated membership oracle. To ease the
following calculations (and since we are only interested in asymptotic results
anyhow), we do not charge the RSH or QSH for querying the first search
point x(0).

Since we use the query complexity model, we define the runtime of the
search heuristic as its expected optimization time.

Definition 5.1 (Optimization Time). The optimization time of the con-
sidered search heuristic is the random variable T that denotes the number of
queries performed by the search heuristic until it has found the first (globally)
optimal search point. The runtime of the considered search heuristic is its
expected optimization time.

In general, the runtime of the considered search heuristic is unbounded.
For example, if the objective function has a local optimum (Jump, Needle,
TinyTrap), then the runtime of RLS is unbounded (with positive probabil-
ity the local optimum is the initial search point of RLS). We treat the special
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case of unbounded runtimes separately in our analysis of specific objective
functions in Section 6. In this section, we provide tools to bound the runtime
of a QSH on problems for which the corresponding RSH has finite runtime.
Therefore, for the rest of this section, we always assume that the runtime of
the considered RSH (on the considered objective function) is finite.

For the RSH, we need exactly one query to move from the search point x(t)

to the search point x(t+1). Therefore, the optimization time TRSH is the first
point in time t ∈ N such that x(t) is optimal. Unfortunately, there is no
analogous description for QSHs, as the number of queries needed to move
from a search point x(t) to its successor x(t+1) is a random variable. In order
to overcome this difficulty, we develop the framework of progress times and
trajectories, which turns out to be equally suited for RSHs and QSHs.

5.1 Transition Probabilities and Progress Times

We now introduce the notions of transition probabilities, progress proba-
bilities, and progress times for the considered search heuristics. Let σ :=
(x(t))t∈N be the random sequence of search points in S generated by the
considered search heuristic. We call σ a run of the search heuristic. It
follows from the definitions of Algorithm 3.2 and Algorithm 4.1 that the se-
quence σ forms a Markov chain. Moreover, since x(0) is chosen uniformly at
random from the finite space S, the event “x(0) = x” has a positive proba-
bility for every x ∈ S. We may therefore define the transition probabilities
for the search heuristic as follows.

Definition 5.2 (Transition Probability p(x,y)). For two search points x
and y in S, the transition probability from x to y of the considered search
heuristic is

p(x,y) := Pr
[
x(1) = y

∣∣x(0) = x
]
.

Note that, since σ forms a Markov chain, we actually have

p(x,y) = Pr
[
x(t+1) = y

∣∣x(t) = x
]

for all t ∈ N for which the event “x(t) = x” has positive probability.
In our analysis, the probability p(x,x) that the considered search heuris-

tic stays at the current search point and does not move to a better solution
plays a major role. For example, if p(x,x) = 1, then the search heuristic
will never leave the search point x. Following the terminology of Markov
chains, we call such a search point absorbing and all other search points
non-absorbing.

As stated above, we only consider RSHs with finite runtimes in this
section. Since each search point appears with positive probability as the
initial search point of the RSH, this implies that in our case all absorbing
search points must be optimal. However, the inverse is not necessarily true
since the considered RSH might move between different optima.
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We will be particularly interested in the probability that the RSH does
not remain in the same search point. We call this probability the progress
probability.

Definition 5.3 (Progress Probability pRSH(x)). For a search point x ∈ S,
the progress probability pRSH(x) at x of the considered RSH is given by

pRSH(x) := 1− pRSH(x,x).

If x is the current search point of the RSH and x is non-absorbing, then
the expected time the RSH remains in x is the reciprocal of the progress
probability pRSH(x). In other words, the progress probability determines the
expected number of queries the RSH needs to leave x. (In case x is absorbing,
the future behavior of the RSH is fixed since it will never leave x.)

We might as well define the quantity 1−pQSH(x,x) as the progress prob-
ability of the QSH. However, we deliberately refrain from doing so for the
following reasons. First, pQSH(x,x) takes only the two values zero and one,
since the QSH always progresses if possible. Second, even if pQSH(x,x) equals
zero, unlike to the RSH the expected numbers of queries needed for the QSH
to progress is usually not one, since the QSH applies in each step the sam-
pling procedure from Theorem 2.2 which takes several steps. Third, we will
soon see that it is much more comfortable to link the expected number of
queries the QSH needs to leave the search point x to the progress probability
pRSH(x) of the RSH.

In the light of these facts, we focus on the number of queries needed for
both search heuristics, the RSH and the QSH, to progress from the current
search point, rather than on a definition of progress probabilities for the
QSH. Since we only count in the optimization time queries of the considered
search heuristic which happen until an optimum is found, we do not charge
the search heuristics for queries if the current search point is already optimal.

Definition 5.4 (Progress Time R(x) with Expectation r(x)). For all x ∈ S,
the progress time R(x) at x is the random variable defined as follows. If x
is optimal, then R(x) takes the value zero. Otherwise, R(x) denotes the
number of queries needed by the considered search heuristic starting at x to
find a search point different from x. We denote the expected progress time
by r(x).

Let x ∈ S be a non-optimal search point. Then it is well-known that the
expected progress time rRSH(x) and the progress probability pRSH(x) of the
considered RSH satisfy

rRSH(x) =
1

pRSH(x)
. (5.1)

Recall, that we only consider RSHs with finite runtime, that is, non-optimal
implies non-absorbing.
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As discussed above, there is no such direct relation between the expected
progress time of the considered QSH and the probability for it to leave the
current search point. However, Theorem 2.2 allows us to express the expected
progress time of the QSH in terms of the expected progress time of the RSH.

Lemma 5.5. Let c and C be the two positive absolute constants from The-
orem 2.2. For every x ∈ S, the expected progress time rRSH(x) of the con-
sidered RSH and the expected progress time rQSH(x) of the associated QSH
satisfy

c · rRSH(x)
1/2 ≤ rQSH(x) ≤ C · rRSH(x)

1/2. (5.2)

Proof. The relations (5.2) follow directly from the definition of Algorithm 4.1
and the first part of Theorem 2.2 if we set p := pRSH(x) = rRSH(x)−1.

Apart from relating the expected progress times of the RSH and the
QSH, Theorem 2.2 also allows us to relate the transition probabilities of the
two search heuristics.

Lemma 5.6. Let x ∈ S be non-optimal and let y ∈ S with x 6= y. Then the
transition probability pRSH(x,y) of the considered RSH, the progress proba-
bility pRSH(x) of the considered RSH and the transition probability pQSH(x,y)
of the associated QSH satisfy

pQSH(x,y) =
pRSH(x,y)

pRSH(x)
. (5.3)

Proof. Recall, that we only consider RSHs with finite runtime. That is,
since x is non-optimal, it is also non-absorbing. Thus, we have pRSH(x) > 0
and the above fraction is well defined.

Equation (5.3) follows directly from Algorithm 4.1 and from Theorem 2.2
if we set S0 := {y ∈ S : y 6= x}, and let the distribution DA be given by the
probabilities pRSH(x,y) for all y ∈ S. Then, we have by the second part of
Theorem 2.2 that

PrQSH

[
x(1) = y

∣∣x(0) = x
]

= PrDA
[
x(1) = y

∣∣x(0) = x ∧ x(1) 6= x
]
.

Thus, by the law of conditional probability, we have

pQSH(x,y) =
PrDA

[
x(1) = y

∣∣x(0) = x
]

PrDA
[
x(1) 6= x

∣∣x(0) = x
] =

pRSH(x,y)

pRSH(x)

which shows equation (5.3).

The previous two lemmas, Lemma 5.5 and Lemma 5.6, capture the con-
sequence of Theorem 2.2 to the setting of QSHs and serve as the (only) link
between the runtime analysis of QSHs and the results and observations in
Section 2. Together, these two lemmas formulate the central observations
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that allow us to analyze the runtime behavior of the QSH. Lemma 5.5 tells
us that using the considered QSH gives us a quadratic speedup over the as-
sociated RSH in the expected number of queries necessary to move from a
non-optimal search point to the next one. Lemma 5.6 tells us that, condi-
tioned on the event that both search heuristics indeed move to a new search
point (which happens with certainty for the QSH), the distributions of these
new (random) search points are the same for both search heuristics.

In the next section, we see how these observations extend from a single
step of the considered search heuristics to the whole run.

5.2 The Trajectory of a Run

The run of a QSH never reproduces the same search point in consecutive steps
except for the last search point. For RSHs, this does not need to be the case.
At the t-th sampling step a search heuristic might sample a point which is
worse than the current solution in which case it discards it. In this case, both
x(t) and x(t+1) are the same point in the search space. Thus, in a run σRSH

of the RSH, many of the consecutive sample points may be repetitions. To
overcome this difference and to compare the optimization behavior of the
considered QSH with that of the associated RSH, we introduce the notion of
the trajectory of a run of the RSH. It is obtained from the sequence of search
points generated by the RSH if we keep only one element in each consecutive
repetition of the same search point, with the potential exception of the last
point which then repeats itself forever.

Definition 5.7 (Trajectory τ of a Run σ). Let σRSH := (x(t))t∈N be a run
of the considered RSH. Then the trajectory of σRSH, denoted by τRSH, is the
sub-sequence (x(tk))k∈N of σRSH such that t0 = 0 and, for all k ∈ N,

tk+1 := min
{
t ∈ N : t > tk ∧ x(t) 6= x(tk)

}
if this minimum exists, and

tk+1 := tk + 1

otherwise.

According to this definition, if τRSH = (y(k))k∈N is the trajectory of a
run σRSH of the RSH, we have either

x(0), . . . ,x(t1−1)︸ ︷︷ ︸
=y(0)

,x(t1), . . . ,x(t2−1)︸ ︷︷ ︸
=y(1)

,x(t2), . . . ,x(t3−1)︸ ︷︷ ︸
=y(2)

, . . .

or
x(0), . . . ,x(t1−1)︸ ︷︷ ︸

=y(0)

,x(t1), . . . ,x(t2−1)︸ ︷︷ ︸
=y(1)

, . . . , x(t`)︸︷︷︸
=y(`)

, x(t`)︸︷︷︸
=y(`+1)

, x(t`)︸︷︷︸
=y(`+2)

, . . .

20



in the special case that x(tk) = x(tk+1) for all k ≥ `. Note that a run σRSH is
a random sequence of search points and so is its trajectory τRSH.

As mentioned above, a run σQSH of a QSH never reproduces the same
search point in consecutive steps except for the last search point. There-
fore, we refrain from defining the trajectory of σQSH as we did for RSHs in
Definition 5.7, since this trajectory would be equal to σQSH.

Now, the crucial observation is that for a fixed sequence σ, the probability
that a run of the associated QSH coincides with σ is exactly the same as
the probability that a run of the considered RSH has trajectory σ. In other
words, the runs of the QSH and the trajectories of the runs of the RSH share
the same distribution3. This is a direct consequence Lemma 5.6.

Lemma 5.8. Let σQSH := (x
(k)
QSH)k∈N be a run of the considered QSH and

let τRSH := (x
(tk)
RSH)k∈N be the trajectory of a run σRSH := (x

(t)
RSH)t∈N of the

associated RSH. Then,

Pr
[
∀k ∈ {0, . . . , `} : x

(k)
QSH = y(k)

]
= Pr

[
∀k ∈ {1, . . . , `} : x

(tk)
RSH = y(k)

]
holds for every ` ∈ N ∪ {∞} and for every infinite sequence σ := (y(k))t∈N
of search points in S.

Proof. On the one hand, for PQSH := Pr
[
∀k ∈ {0, . . . , `} : x

(k)
QSH = y(k)

]
, we

have

PQSH = Pr
[
x

(0)
QSH = y(0)

]
·
∏̀
k=1

Pr
[
x

(k)
QSH = y(k)

∣∣x(k−1)
QSH = y(k−1)

]
and on the other hand, for PRSH := Pr

[
∀k ∈ {0, . . . , `} : x

(tk)
RSH = y(k)

]
, we

have

PRSH = Pr
[
x

(t0)
RSH = y(0)

]
·
∏̀
k=1

Pr
[
x

(tk)
RSH = y(k)

∣∣x(tk−1)
RSH = y(k−1)

]
.

Thus, in order to show Lemma 5.8, it suffices to show that

Pr
[
x

(t0)
RSH = x

]
= Pr

[
x

(0)
QSH = x

]
(5.4)

holds for all k ∈ N and x ∈ S and that

Pr
[
x

(tk+1)
RSH = y

∣∣x(tk)
RSH = x

]
= Pr

[
x

(k+1)
QSH = y

∣∣x(k)
QSH = x

]
(5.5)

3Note that the set of infinite sequences of search points in not countable. Thus, tech-
nically, we consider the probability space over the sigma-algebra generated by all sets
of sequences starting with the same first elements. Lemma 5.8 reflects this notion. For
reasons of simplicity, we assume this argument implicitly for the remainder of this section.
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holds for all x,y ∈ S with x 6= y. In this, we assume all conditional prob-
abilities are defined and non-zero, since otherwise the result holds trivially
with both probabilities equal to zero.

Equation (5.4) holds since t0 = 0, and both the considered RSH and the
associated QSH generate the initial search point uniformly at random.

To show equation (5.5), we recall that by the definition of the tk’s, we
have that x

(tk+1−1)
RSH = x

(tk)
RSH and that x

(tk+1)
RSH 6= x

(tk)
RSH. Since σRSH forms a

Markov chain, we have for all x 6= y that

Pr
[
x

(tk+1)
RSH = y

∣∣x(tk)
RSH = x

]
= Pr

[
x

(1)
RSH = y

∣∣x(1)
RSH 6= x ∧ x

(0)
RSH = x

]
.

Applying the laws of conditional probability, we get

Pr
[
x

(1)
RSH = y

∣∣x(1)
RSH 6= x ∧ x

(0)
RSH = x

]
=

Pr
[
x

(1)
RSH = y

∣∣x(0)
RSH = x

]
Pr
[
x

(1)
RSH 6= x

∣∣x(0)
RSH = x

] .
Therefore,

Pr
[
x

(tk+1)
RSH = y

∣∣x(tk)
RSH = x

]
=
pRSH(x,y)

pRSH(x)
.

Finally, since σQSH also forms a Markov chain, we have

Pr
[
x

(k+1)
QSH = y

∣∣x(k)
QSH = x

]
= Pr

[
x

(1)
QSH = y

∣∣x(0)
QSH = x

]
= pQSH(x,y).

Then the equation (5.5) follows from Lemma 5.6.

A central notion in the main lemma of this section (Lemma 5.10) is the
notion of frequency of a search point. Lemma 5.8 assures that the following
definition of the expected frequency is well-defined.

Definition 5.9 (Frequency M(x) with Expectation m(x)). Let the fre-
quencyMQSH(x) andMRSH(x) of a non-optimal search point x be the random
variable that denotes the number of occurrences of x in the run σQSH of the
considered QSH and in the trajectory τRSH of the run of associated RSH, re-
spectively. If x is optimal, we set MRSH(x) and MQSH(x) to be the random
variable that is 0 with probability 1. Then, for every x ∈ S, we call the value

m(x) := E
[
MRSH(x)

]
= E

[
MQSH(x)

]
the expected frequency of x.

Note that for the conservative selection rule, the fitness is strictly mono-
tonically increasing along the trajectory. Therefore, the random variable
M(x) takes only values in {0, 1}, and its expectation m(x) (for non-optimal
x) is just the probability that x occurs in the trajectory. We now give the
main lemma of this section which connects the runtime of the considered
search heuristic to its expected frequencies and expected progress times.
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Lemma 5.10. Let r(x) be the expected progress time of the considered search
heuristic and let its optimization time T be finite in expectation. For a search
point x ∈ S, let m(x) be the expected frequency of x as defined in Defini-
tion 5.9. Then, we have

E[T ] =
∑
x∈S

m(x) · r(x).

Note, that in this lemma the quantity r(x) depends on whether we con-
sider the classical or the quantum search heuristic but the quantity m(x)
does not.

Proof of Lemma 5.10. Let σ = (x(t))t∈N be a run of the considered search
heuristic and let (y(k))k∈N := (x(tk))k∈N be its trajectory in the case where
we consider the RSH and (y(k))k∈N := σ in the case where we consider the
QSH.

For a non-optimal search point x ∈ S and k ∈ N, let Mk(x) be the
random indicator variable that takes the value 1 if y(k) = x, and the value 0
otherwise. Moreover, let Rk := R(y(k)) be the random variable that denotes
the number of queries the considered search heuristic needs to move from y(k)

to y(k+1). We set Rk(x) := 0 and Mk(x) := 0 if x is optimal.
Then we have

T =
∑
k∈N

Rk

and
M(x) =

∑
k∈N

Mk(x).

Let k ∈ N. We want to determine E[Rk]. By the law of total expectation,
we have that

E[Rk] =
∑
x∈S

r(x) Pr[y(k) = x],

since, for both the RSH and the QSH, r(x) is the expected number of queries
needed to leave the search point x. Next, we have

Pr[y(k) = x] = E[Mk(x)],

and therefore
E[Rk] =

∑
x∈S

r(x) E[Mk(x)].

Finally, we can determine E[T ]. By the linearity of expectation, we get

E[T ] =
∑
k∈N

E[Rk] =
∑
k∈N

∑
x∈S

r(x) E[Mk(x)] =
∑
x∈S

r(x) E[M(x)],

which concludes the proof of the statement. Note that in the last step we
could reorder the sum since we assumed that T has finite expectation.
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5.3 Approximate Runtimes

In this section, we introduce the tools we will apply later to approximate
the runtime of the considered QSH by studying the optimization behavior
of the associated RSH. We start with our central theorem, which allows us
to bound the runtime of the considered QSH in terms of the progress times
and transition probabilities of the associated RSH.

Theorem 5.11. Let c and C be the two positive absolute constants from
Theorem 2.2. For all search points x ∈ S, let rRSH(x) be the expected progress
time of the considered RSH (see Definition 5.4), and let m(x) be the expected
frequency of x in the trajectory of its run (see Definition 5.9).

The optimization time of the considered RSH is finite if and only if the
optimization time TQSH of the associated QSH is finite. In this case, TQSH

satisfies

c
∑
x∈S

m(x) ·
(
rRSH(x)

)1/2 ≤ E[TQSH] ≤ C
∑
x∈S

m(x) ·
(
rRSH(x)

)1/2
.

Proof. The RSH and QSH are equally likely to take any fixed trajectory
through the search space, only with different speed. Recall from Lemma 5.10
that

E[T ] =
∑
x∈S

m(x) · r(x) (5.6)

and that the quantity r(x) depends on whether we consider the classical or
the quantum search heuristic but the quantity m(x) does not.

Since the search space is finite, the expected progress times rRSH(x)
and rQSH(x) differ at most by a constant factor depending on the search
space S, the mutation operator mut, and the objective function f . Thus if
Equation (5.6) yields a finite value for the RSH, then it also does so for the
QSH, and vice versa.

So the RSH has finite expected optimization time if and only if the
QSH has. Hence, Theorem 5.11 is a direct consequence of Lemma 5.10
and Lemma 5.5.

Next, we prove a lemma which is tailored for analyzing the problems in
Section 6. It is useful if we can partition the search space into regions where
the progress probability of the RSH behaves similarly. This turns out to
be very convenient for the analysis of a QSH when the associated RSH is
already understood. A good example for the situation is the fitness level
based analysis of the function OneMax in Section 6.1. (However, in general
the regions do not need to correspond to fitness levels.) In this case, the
runtimes of QSH and RSH are strongly related.

Lemma 5.12. Let c and C be the two positive absolute constants from The-
orem 2.2. Let ` ∈ N and let S be partitioned into ` parts S1, . . . ,S`.
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Suppose, for every j ∈ {1, . . . , `}, there exist two real values pj and Pj
with 0 < pj ≤ Pj ≤ 1 such that for all non-optimal search points x ∈ Sj, the
progress probability pRSH(x) of the considered RSH satisfies the inequalities

pj ≤ pRSH(x) ≤ Pj .

For j ∈ {1, . . . , `}, let Tj denote the number of queries spend by the RSH on
leaving search points in Sj. Then the optimization time TQSH of the associated
QSH satisfies

c
∑̀
j=1

p
1/2
j E[Tj ] ≤ E[TQSH] ≤ C

∑̀
j=1

P
1/2
j E[Tj ].

Before we proof this lemma, we restate it for the case that we only con-
sider one region. This proves useful for bounding the runtime of the consid-
ered QSH in case that there is an easy way to bound the progress probability
as well as the runtime of the associated classical variant.

Corollary 5.13. Let c and C be the two positive absolute constants from
Theorem 2.2. Suppose there exist two values pmin and pmax in R with 0 <
pmin ≤ pmax ≤ 1 such that, for all non-optimal x ∈ S, the progress probabil-
ity pRSH(x) of the considered RSH satisfies the inequality

pmin ≤ pRSH(x) ≤ pmax.

Then the optimization time TRSH of the considered RSH and the optimization
time TQSH of the associated QSH satisfy

cp
1/2
min E[TRSH] ≤ E[TQSH] ≤ Cp1/2max E[TRSH].

Note that Corollary 5.13 implies that E[TQSH] ∈ O(E[TRSH]) since we may
always choose pmax = 1. We now turn to the proof of Lemma 5.12.

Proof of Lemma 5.12. For the beginning, let j ∈ {1, . . . , `} and x ∈ S be
fixed. Starting with Lemma 5.5, we have

c
(
rRSH(x)

)1/2 ≤ rQSH(x) ≤ C
(
rRSH(x)

)1/2
Thus, by equation (5.1), we get

c
(
pRSH(x)

)−1/2 ≤ rQSH(x) ≤ C
(
pRSH(x)

)−1/2
.

We multiply the three parts of the two inequalities by m(x). This gives us

cm(x)
(
pRSH(x)

)−1/2 ≤ m(x)rQSH(x) ≤ Cm(x)
(
pRSH(x)

)−1/2
.
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Since we assumed that pj ≤ pRSH(x) ≤ Pj for all non-optimal points x ∈ Sj
(and since m(x) = 0 for all optimal x), this implies

cp
1/2
j m(x)

(
pRSH(x)

)−1 ≤ m(x)rQSH(x) ≤ CP 1/2
j m(x)

(
pRSH(x)

)−1
.

We substitute equation (5.1) again and obtain

cp
1/2
j m(x)rRSH(x) ≤ m(x)rQSH(x) ≤ CP 1/2

j m(x)rRSH(x).

Finally, we sum over all x ∈ Sj and all j ∈ {1, . . . , `} which results in

c
∑̀
j=1

p
1/2
j

∑
x∈Sj

m(x)rRSH(x) ≤
∑
x∈S

m(x)rQSH(x) ≤ C
∑̀
j=1

P
1/2
j

∑
x∈Sj

m(x)rRSH(x).

Then Lemma 5.12 follows directly from Lemma 5.10.

5.4 The Adapted Markov Chain

Recall that the considered RSH can be seen as a Markov chain that performs
one query each step and has transition probabilities pRSH(x,y) as defined
before. The situation for the associated QSH is slightly more complicated.
At each sampling step, the QSH has probability 1 of sampling a new solution
(unless it has found an absorbing optimum) because the probability has been
quantum mechanically amplified. However, if the current solution is x then
to make the one sampling step costs the algorithm in expectation a total of
rQSH(x) ∈ Θ

(
pRSH(x)−1/2

)
queries where pRSH(x) is the progress probability

of the RSH. Nevertheless, we can still model the QSH as a Markov chain
which charges in expectation one query per step by scaling the transition
probabilities of the corresponding RSH appropriately. It turns out that,
with respect to the runtime, the QSH behaves asymptotically as if it was a
RSH with these adapted transition probabilities.

Theorem 5.14. Let TQSH be the optimization time of the considered QSH.
For the corresponding RSH, let pRSH(x,y) be the transition probability be-
tween the points x and y and let pRSH(x) be the progress probability at the
point x. Then

E[TQSH] ∈ Θ
(

E[TR̃SH]
)
,

where TR̃SH is the optimization time of the (adapted) RSH corresponding to
the adapted transition probabilities

pR̃SH(x,y) =


1− pRSH(x)1/2 if x = y,

pRSH(x,y)/pRSH(x)1/2 if x 6= y and pRSH(x) > 0,

0 otherwise.
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Proof. First note that pR̃SH(x,y) is well-defined, since, for pRSH(x) > 0, we
have ∑

y∈S
pR̃SH(x,y) = 1− pRSH(x)

1/2 +

∑
y∈S\{x} pRSH(x,y)

pRSH(x)1/2
= 1.

Next, let pR̃SH(x) = 1 − pR̃SH(x,x) be the progress probability at x of the
adapted RSH. Then we have, for every non-absorbing point, that

rRSH(x)
1/2 = pRSH(x)−

1/2 = pR̃SH(x)−1 = rR̃SH(x).

For every non-absorbing points x and every other point y we have

pR̃SH(x,y)

pR̃SH(x)
=
pRSH(x,y)

pRSH(x)
,

that is, the probabilities to move from x to y conditioned on the event
that the process moves at all coincide for the adapted RSH and the RSH
corresponding to the considered QSH. Thus, these probabilities also coincide
for the adapted RSH and the QSH itself. Therefore, the run of the considered
QSH, the trajectory of the corresponding RSH, and the trajectory of the
adapted RSH all have the same distribution and

mQSH(x) = mRSH(x) = mR̃SH(x).

Together, this implies that∑
x∈S

mQSH(x) · rRSH(x)
1/2 =

∑
x∈S

mR̃SH(x) · rR̃SH(x)

and E[TQSH] ∈ Θ(E[TR̃SH]) follows from Lemma 5.10 and Theorem 5.11.

6 Runtime Analysis of Basic Fitness Functions

In this section we present asymptotically tight runtime bounds for the pro-
gressive and conservative variants of QLS and the (1+1) QEA on the pseudo-
Boolean optimization problems OneMax, LeadingOnes, Discrepancy,
Needle, and Jumpm and compare them to their classical counterparts.
The results of this section are summarized in Table 1 in the introduction.
Throughout this section, let n ∈ N be the length of the bit-strings that are
the search points. Since we are only interested in asymptotic results we may
assume that n is sufficiently large. In particular, in order to make the follow-
ing proofs more readable, we suppress rounding signs. For example, without
further notice we assume that n/2 is an integer.
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6.1 OneMax

The pseudo-Boolean function OneMax returns the Hamming weight | · |1 of
a bit-string x ∈ {0, 1}n, that is, it counts the number of one-bits in x,

OneMax(x) := |x|1 =
n∑
i=1

xi . (6.1)

We start with the well-known result on the runtimes of the considered
classical search heuristics on the objective function OneMax (compare [11]).

Theorem 6.1. The runtimes of the (1+1) EA, RLS, the (1+1) EA∗, and
RLS∗ for minimizing OneMax are in Θ(n log n).

We show that the expected query time in the quantum version decreases
only by a logarithmic factor.

Theorem 6.2. The runtimes of the (1+1) QEA, QLS, the (1+1) QEA∗,
and QLS∗ for minimizing OneMax are in Θ(n).

In this subsection, our particular focus is to demonstrate how the proof of
Theorem 6.2 can be derived from the ingredients of the proof of Theorem 6.1.
To this end, we retrace the steps necessary to prove Theorem 6.1. The core
of this proof is a bound on the progress probabilities of the considered RSHs.

Proposition 6.3. Let k ∈ {1, . . . , n} and let x ∈ {0, 1}n be a search point
of Hamming weight k. Then for each, the (1+1) EA, RLS, the (1+1) EA∗,
and RLS∗, the progress probability is in Θ(k/n) and consequently the expected
numbers of queries needed to find a search point of Hamming weight at most
k − 1 when starting in x is in Θ(n/k).

We omit the proof to this proposition. For RLS and RLS∗, the proof
is straight-forward. For the (1+1) EA and the (1+1) EA∗, the proof is
well-known and can be easily deduced from the results and proofs in [11].

The previous proposition already allows us to derive an upper bound on
the runtimes of the four classical search heuristics. The search space may
be subdivided into regions of equal fitness, which we call fitness levels. In
the worst case, a run visits search points for all fitness levels, giving us the
upper runtime bound of O(n log n) in Theorem 6.1.

In order to use the same approach to show the lower bound in Theo-
rem 6.1, we have to be slightly more careful, since the search heuristic may
skip some fitness values. However, the following statement ascertains that
with sufficiently large probability, still linearly many fitness levels are visited.

Proposition 6.4. Consider a run of the (1+1) EA, RLS, the (1+1) EA∗, or
RLS∗ that finds the optimum. With probability at least 1/6, this run visits at
least n/24 many non-optimal search points with distinct Hamming-weights.

28



Proof. First, we show that with probability at least 1/3, the Hamming weight
of the initial search point x(0) (which is uniformly distributed for all four
search heuristics) is at least n/4. This is a direct consequence of the Markov
Inequality (see, e.g., Chapter 1 in [4]). The random variable X := n−|x(0)|1
has expectation E[X] = n/2 (each bit is a one-bit with probability 1/2).
Thus,

Pr
[
|x(0)|1 <

n

4

]
= Pr

[
X >

3

2
E[X]

]
≤ 2

3
.

Next, suppose that the initial search point has indeed Hamming weight
at least n/4. For RLS and RLS∗, this directly implies Proposition 6.4, since
both search heuristics then necessarily need to visit search points of Ham-
ming weights 1, . . . , n/4 in order to reach the optimum. For the (1+1) EA
and the (1+1) EA∗, this does not need to be true. However, we may bound
the expected number of one-bits flipped each time the algorithms improve
their current search point. Because of the symmetry of the OneMax func-
tion, the same analysis applies to both search heuristics.

Let x ∈ {0, 1}n be the current search point of Hamming weight k ∈
{1, . . . , n} of the (1+1) EA or the (1+1) EA∗ and let y be the next random
search point selected by the respective search heuristic. We are interested in
the progress ∆ := |x|1− |y|1, in particular we want to give a constant upper
bound on the expectation of ∆ conditioned on the event that ∆ ≥ 1. By the
law of total expectation, we have that

E
[
∆
]

= E
[
∆
∣∣∆ ≥ 1

]
Pr
[
∆ ≥ 1

]
since ∆ ≥ 0 (worse search points are never selected). We already know from
Proposition 6.3 that

Pr
[
∆ ≥ 1

]
≥ k

en
,

both for the (1+1) EA and the (1+1) EA∗. Moreover, we get an upper
bound of k/n on E[∆] if we condition on the event that none of the zero-bits
in x flips. Thus,

E
[
∆
∣∣∆ ≥ 1

]
≤ e ≤ 3

We conclude the proof of Proposition 6.4 by applying the same argument
using the Markov inequality as above. We have just seen that, in expectation,
the progress made by the search heuristic in the first n/24 improvements is
at most n/8. Thus, the probability that it exceed n/4, the Hamming weight
of the first search point, is at most 1/2. In other words, with probability at
least 1/6 = (1/3) · (1/2), the run visits at least n/24 search points of distinct
Hamming weight before reaching the optimum.

Proposition 6.4, together with Proposition 6.3, now allows us to prove
Theorem 6.2 based on the following idea. Suppose the run of the considered
search heuristic indeed visits at least n/24 fitness levels before it finds the
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optimum. Then we get a lower bound on the runtime if we sum over the lower
bounds on the times to leave these fitness levels given in Proposition 6.4. In
a worst case scenario, the fitness levels visited before finding the optimum
are the levels with values (23/24)n, . . . , n. However, even then the runtime
is at least Ω(n) as stated in Theorem 6.2.

Proof of Theorem 6.2. The following proof holds for all four QSHs consid-
ered in Theorem 6.2. Thus, we consider one of these QSHs and its corre-
sponding RSH.

Let TQSH be the optimization time of the considered QSH. For all k ∈
{1, . . . , n}, let Sk be the set of all search points in {0, 1}n of Hamming
weight k and let Tk be is the number of queries the RSH spends on leaving
the search points in Sk.

We start with the upper bound on E[TQSH]. By Lemma 5.12 and Propo-
sition 6.3 we have that

E[TQSH] ∈ O

(
n∑
k=1

(k
n

)1/2
E[Tk]

)
Moreover, Proposition 6.3 gives us that E[Tk] ∈ O(n/k), where we pessimisti-
cally assume that the RSH visits all fitness levels. Together, this yields

E[TQSH] ∈ O

(
n

1/2
n∑
k=1

1

k1/2

)
.

Thus, since
n∑
k=1

k−
1/2 ≤ 1 +

∫ n

1
x−

1/2dx = 2n1/2 − 1

we get E[TQSH] ∈ O(n).
We now turn to the lower bound on E[TQSH]. Here, we have to be more

careful since the typical run does not visit all fitness levels. Let I ⊆ {1, . . . , n}
be the random set of Hamming weights of non-optimal search points visited
by the RSH. Then we apply Proposition 6.4 and condition on the event that
the run of the RSH visits at least n/24 fitness levels, that is,

E[TQSH] ≥
E
[
TQSH

∣∣ |I| ≥ n/24
]

6

We again invoke Lemma 5.12 and Proposition 6.3 and get

E[TQSH] ∈ Ω

(
n∑
k=1

(k
n

)1/2
E
[
Tk
∣∣ |I| ≥ n/24

])
.

Then, Proposition 6.3 gives us that

E[TQSH] ∈ Ω

(
n1/2 E

[∑
k∈I

1

k1/2

∣∣∣ |I| ≥ n/24
])

.
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Note that the random sum
∑

k∈I k
−1/2 strongly depends on the random

choice of I. However, for all |I| ≥ n/24, this sum is bounded from below by

n∑
k=(23/24)n

1

k1/2
≥
∫ n

(23/24)n
x−

1/2dx = 2
(
1− (23/24)

1/2
)
n

1/2 ∈ Ω
(
n

1/2
)
.

Therefore, we have E[TQSH] ∈ Ω(n) which concludes the proof of Theorem 6.1.

6.2 LeadingOnes

The pseudo-Boolean function LeadingOnes counts the number of one-bits
preceding the first zero-bit in a bit-string x ∈ {0, 1}n, that is, let

LeadingOnes(x) :=
n∑
k=1

k∏
i=1

xi . (6.2)

The following theorem can be deduced from [11].

Theorem 6.5. The runtimes of the (1+1) EA, RLS, the (1+1) EA∗, and
RLS∗ maximizing LeadingOnes are in Θ(n2).

For the progressive selection rule, quantum acceleration does not yield
a substantial speedup. In contrast, for the conservative selection rule the
runtime decreases considerably.

Theorem 6.6. The runtimes of the (1+1) QEA∗ and of QLS∗ maximizing
LeadingOnes are in Θ(n3/2). The runtimes of the (1+1) QEA or QLS
maximizing LeadingOnes are in Θ(n2).

Proof. We start with the conservative selection strategy. Let us first con-
sider QLS∗. For any non-optimal search point x, the mutation step yields a
better search point if and only if the first zero-bit is flipped. So the progress
probability of RLS∗ is pRSH(x) = 1/n for all non-optimal search points. For
the (1+1) QEA∗ let x be any non-optimal search point. Assume that xi is
the first zero-bit in x. Then the mutation step yields a better search point
if and only if xi is flipped, and all preceding bits are unchanged. Therefore,
the progress probability is

pRSH(x) =
1

n

(
1− 1

n

)i−1
.

Thus, since (1− 1/n)n−1 ≥ e−1 and 0 ≤ i ≤ n, we may bound the progress
probability by 1/(en) ≤ pRSH(x) ≤ 1/n .

So for both QLS∗ and the (1+1) QEA∗, we have shown that

1

en
≤ pRSH(x) ≤ 1

n
.
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Therefore, by Corollary 5.13,

E[TQSH] ∈ Θ(n−
1/2 E[TRSH]) = Θ(n3/2).

Now consider the progressive selection strategy. The upper bound is
trivial, Lemma 5.12 implies that QSH is always asymptotically at least as
fast in expectation as the corresponding RSH.

For the lower bound, we partition the search space into two sets

S1 := {x | LeadingOnes(x) < n/2} ,

S2 := {x | LeadingOnes(x) ≥ n/2} ,

and give a lower bound for the time spent in S1.
We want to apply Lemma 5.12. For this, we have to give a lower bound

on the progress probability pRSH(x) of RLS and the (1+1) EA for all x ∈ S1.
Thus, let x be any search point in S1. First consider RLS. The progressive
selection strategy will accept any search point of equal fitness. Thus if the
mutation operator flips any bit in the second half of x, then the offspring is
accepted. Therefore,

pRSH(x) ≥ 1/2.

Now we turn to the (1+1) EA. If the mutation operator flips exactly one
bit in the second half, and no bit in the first half, then the offspring will
be accepted since it has at least the same fitness and differs from x (which
is required in the quantum case). There are many other ways to produce
offsprings that are accepted, but this particular way will suffice. Hence, the
progress probability is at least

pRSH(x) ≥ n

2
· 1

n
·
(

1− 1

n

)n−1
≥ 1

2e
.

In both cases, for the QSH and the (1+1) QEA, we have pRSH(x) ≥ 1/(2e).
Therefore, by Corollary 5.13, we get

E[TQLS] ∈ Ω(E[T
(1)
RLS])

and
E[TQEA] ∈ Ω(E[T

(1)
EA ]),

where E[T
(1)
RLS] and E[T

(1)
EA ] are the expected times needed by RLS and the

(1+1) EA to leave S1. These expected times are at least of the same order as
the expected times to solve the LeadingOnes problem on n/2 bits. (Just
consider the first n/2 bits of x). Thus E[T

(1)
RLS] ∈ Ω(n2) and E[T

(1)
EA ] ∈ Ω(n2).

(Another way to see this is to recapture the proof of Theorem 6.5). Therefore,
Theorem 6.6 follows.
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6.3 Discrepancy

The pseudo-Boolean function Discrepancy denotes half the difference in
the number of one-bits and zero-bits in a bit-string x ∈ {0, 1}n of even
length n, that is, let

Discrepancy(x) :=
∣∣∣n
2
−OneMax(x)

∣∣∣ . (6.3)

This function is not a standard test function for evolutionary algorithms,
because it is too easy to optimize. However, it demonstrates that for easy
problems (with high progress probabilities) a QSH is not necessarily strictly
faster than the corresponding RSH.

Lemma 6.7. Let n ∈ N be even and let x ∈ {0, 1}n be chosen uniformly at
random. Then,

E[Discrepancy(x)] ∈ Θ(n
1/2) .

Proof. Let n = 2k. Then, the lemma follows from

E[Discrepancy(x)] = 2
k∑
i=0

(k − i)
(

2k
i

)
2−2k

=

k∑
i=0

(
(2k − i)

(
2k
i

)
− i
(

2k
i

))
2−2k

=
k∑
i=0

2k
((

2k−1
i

)
−
(

2k−1
i−1

))
2−2k

= 2k
(

2k−1
k

)
2−2k

= k
(

2k
k

)
2−2k,

and from
(

2k
k

)
∼ 22k/

√
π k due to Stirling’s formula.

For the function Discrepancy, we show that the runtimes of the RSHs
and QSHs we consider are asymptotically equal.

Theorem 6.8. For each of the algorithms (1+1) EA, RLS, (1+1) QEA,
and QLS, both for the conservative and for the progressive selection strategy,
the runtime for minimizing Discrepancy is in Θ(

√
n).

Proof. We first show that throughout the runs of the classical algorithms
(RLS, the (1+1) EA, RLS∗, and the (1+1) EA∗) the progress probabilities
are bounded below by positive constants. By Corollary 5.13, this implies
that the runtimes of the QSHs and the corresponding RSHs are of the same
order.

For every search point x with Discrepancy(x) > 0 we have at least
n/2 zero-bits or n/2 one-bits. In both cases, flipping exactly one of these
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bits and leaving all other bits untouched decreases the discrepancy by one.
Thus, the progress probability is at least (n/2) · (1/n) ≥ 1/2 for RLS and at
least (n/2) · (1/n) · (1− 1/n)n−1 ≥ 1/(2e) for the (1+1) EA, independent of
the selection strategy we use.

It remains to establish the runtimes of the classical algorithms. Since
the objective function Discrepancy behaves symmetrically for all search
points of equal value, the runtimes of the classical algorithms coincide for
the progressive and the conservative selection strategy. We restrict ourselves
to the conservative versions and show that both have runtimes in Θ(n1/2).

To this end, consider a search point x with Discrepancy(x) > 0, and
let y be the search point after one mutation and selection step. Then for
both RLS∗ and the (1+1) EA∗, the expected progress is bounded from above
and below by two positive constants, that is

1

2e
≤ E[Discrepancy(x)−Discrepancy(y)] ≤ 1. (6.4)

The lower bound holds since both strategies make a progress of one with
probability at least 1/2e as we have already seen above. The upper bound
holds since the progress is bounded from above by the expected number of
flipped bits which equals one for both algorithms.

By classical drift analysis (see [17]), the inequalities in (6.4) imply that
the runtimes are of the same order as the objective value of the initial search
point, which we have shown in Lemma 6.7 to be in Θ(n1/2).

6.4 Needle

The pseudo-Boolean function Needle has a unique optimum, and is con-
stant elsewhere. For x ∈ {0, 1}n,

Needle(x) :=

{
1, if x = (0, . . . , 0)

0, else.
(6.5)

Theorem 6.9.

(a) The runtime of the (1+1) EA maximizing Needle is in Θ(2n).

(b) The runtime of RLS maximizing Needle is in Θ(2n).

(c) The runtime of the (1+1) EA∗ maximizing Needle is in Θ( 1
2nn

n).

(d) RLS∗ asymptotically almost surely does not find the global maximum of
Needle (that is, with probability tending to 1 as n→∞).

Proof. The statement for RLS∗ is clear because the algorithm only finds the
optimum if the starting point is either the optimum itself or adjacent to the
optimum. The probability that this happens is exponentially small.
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For RLS and the (1+1) EA, see [14]. For the (1+1) EA∗, the algorithm
starts in a point x ∈ {0, 1}n with probability 2−n and then needs in ex-
pectation Θ(nd) steps to find the optimum (0, . . . , 0), where d > 0 is the
Hamming weight of x. For x = (0, . . . , 0), it needs 0 steps. Thus, by the
Binomial formula, we have E[TEA∗ ] ∈ Θ(µEA∗) with

µEA∗ =
1

2n

n∑
d=1

(
n

d

)
nd =

(n+ 1)n − 1

2n
=

(1 + 1/n)nnn − 1

2n

Hence, E[TEA∗ ] ∈ Θ
(
(n/2)n

)
since limn→∞(1 + 1/n)n = e.

We show that the quantum versions perform equally bad on the Needle
function. Only the (1 + 1) QEA∗ is better than the (1 + 1) EA∗. However,
since the runtime is super-exponential (growing faster than any exponential
function), the improvement is small in comparison.

Theorem 6.10.

(a) The runtime of the (1+1) QEA maximizing Needle is in Θ(2n).

(b) The runtime of QLS maximizing Needle is in Θ(2n).

(c) The runtime of the (1+1) QEA∗ maximizing Needle is in Θ( e
√
n

2n n
n/2).

(d) QLS∗ asymptotically almost surely does not find the global maximum of
Needle.

Proof. First let us look at the progressive algorithms. Since all points except
the optimum are of equal fitness, the algorithms accept every sample point
as a new search point. Hence, the progress probability is 1, and E[TQSH] ∈
Θ(E[TRSH]) by Corollary 5.13. This proves (a) and (b).

The statement for QLS∗ follows immediately from the statement for RLS∗

in Theorem 6.9 since both algorithms have exactly the same probability to
terminate by Theorem 2.2.

So let us look at the (1+1) QEA∗. The algorithm will visit at most two
search points x(0) and x(1), with x(0) drawn uniformly at random, and x(1) =
(0, . . . , 0) the optimum. Therefore, the expected number of visits m(x) is 1

2n

for all x 6= (0, . . . , 0).
Assume that the Hamming weight of x(0) is d. Then the progress prob-

ability pQEA∗(x
(0)) of the associated (1+1) EA∗ is n−d and its expected

progress time is in Θ(nd) (or 0 if x(0) = (0, . . . , 0)). Since there are ex-
actly

(
n
d

)
search points with Hamming weight d, we have by Theorem 5.11

that E[TQEA∗ ] ∈ Θ(µQEA∗) with

µQEA∗ :=
1

2n

n∑
d=1

(
n

d

)
n
d/2 .
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By the Binomial formula, we obtain

µQEA∗ =
1

2n
(
(n

1/2 + 1)n − 1
)

=
1

2n
(
(1 + n−

1/2)nn
n/2 − 1

)
and therefore, since ex−2x2 ≤ 1 + x ≤ ex holds for all x ∈ [−1/2, 1/2], we
have

e
√
n−2nn/2 − 1

2n
≤ µQEA∗ ≤

e
√
nnn/2 − 1

2n
.

Thus,

E[TQEA∗ ] ∈ Θ
(e
√
nnn/2

2n

)
.

6.5 Jump

Let m be a positive integer constant. The pseudo-Boolean function Jumpm
is defined as follows. For x ∈ {0, 1}n,

Jumpm(x) :=


OneMax(x), if 0 < OneMax(x) < m

2n−OneMax(x), if OneMax(x) ≥ m
2n, if x = (0, . . . , 0)

(6.6)

The function has a unique maximum in (0, . . . , 0), but has small fitness
in a region around this point. Therefore, typically a RSH will have to jump
to the optimum. This problem has been analyzed by Droste, Jansen, and
Wegener [11] in order to show that a wide variance of runtimes can occur.
Compared to these authors, we have changed the definition of the function
slightly so that the indices are more convenient for our analysis.

Theorem 6.11. Let m ∈ N with m ≥ 2 be a constant.

(a) The runtimes of the (1+1) EA and the (1+1) EA∗ maximizing Jumpm
are in Θ(nm).

(b) RLS and RLS∗ asymptotically almost surely do not find the global max-
imum of Jumpm.

Proof. For the (1+1) EA, see [11]. For the (1+1) EA∗, note that for any
two search points x and y with the same number of one-bits, the problem is
symmetric with respect to x and y. That is, there is a fitness-invariant auto-
morphism of the space mapping x to y. Therefore, the runtime is the same
for x and y. So the runtime is equal for the (1+1) EA and the (1+1) EA∗,
and the statement for the (1+1) EA∗ follows.

The statements for RLS and RLS∗ are obvious because the only fitness-
increasing paths ending in the optimum start either in the optimum itself or
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in a search point of Hamming weight 1. Since the sequence of search points
will be such a path, the algorithm can only find the optimum if it starts
either in the optimum itself or in a point of Hamming weight 1. By the
Chernoff bound (see, e.g., Chapter 1 in [4]), the probability for this event is
exponentially small as n→∞.

We find that for Jumpm, the conservative algorithm gains quadratic
speedup (for m > 1) while the progressive one is hardly better than its clas-
sic version. The reason is that in the conservative setting there is one very
hard step (the jump) with no easy alternatives, whereas in the progressive
version the algorithm is allowed to make easy moves along the boundary of
the gap. Note that for the classical algorithms, there is no difference between
the conservative and the progressive selection strategy.

Theorem 6.12. Let m ∈ N with m ≥ 2 be a constant.

(a) The runtime of the (1+1) QEA maximizing Jumpm is in Θ(nm−1/2).

(b) The runtime of the (1+1) QEA∗ maximizing Jumpm is in Θ(nm/2).

(c) QLS and QLS∗ asymptotically almost surely does not find the global max-
imum of Jumpm.

Before we prove the theorem, we state a lemma.

Lemma 6.13. Let x ∈ {0, 1}n be of Hamming weight k ∈ {1, . . . , n}. Then
the probability p that the mutation operator of the (1+1) EA generates a
vector y 6= x of the same Hamming weight satisfies

min{k, n− k}
2en

≤ p ≤ k

n
.

Proof. Since y 6= x and both vectors have the same Hamming weight, the
mutation operator has to flip at least one one-bit and at least one zero-bit.

We bound p from below by the probability that exactly one zero-bit and
one one-bit are flipped in x,

p ≥ k(n− k) · 1

n2
·
(

1− 1

n

)n−2

≥ min{k, n− k}
2en

,

since

k(n− k) = min{k, n− k} ·max{k, n− k} ≥ min{k, n− k}n
2

.

To bound p from above, we apply the union-bound to the (not necessarily
independent) events that a given pair of a zero-bit and a one-bit is flipped
in x, while we do not care whether the other bits flip. Therefore

p ≤ k(n− k) · 1

n2
≤ k

n
.
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Proof of Theorem 6.12. The statements for QLS and QLS∗ follow directly
from the statements for RLS and RLS∗, because the classical algorithm will
find the optimum if and only if the quantum algorithm does.

For the (1+1) QEA and (1+1) QEA∗, we divide the run of the algorithms
into three phases, some of which may be empty. In the first phase, the fitness
is strictly less than m. In the second phase, the fitness is at least m, but
strictly smaller than 2n−m. In the third phase, the fitness is at least 2n−m.

We claim that the problem of leaving the first phase is strictly easier
than the problem of maximizing OneMax. In fact, consider the auxiliary
problem where all search points x with 0 < OneMax(x) < m have the
same fitness as in Jump, but all other search points have fitness 2n. Then
the problem of leaving the first phase for Jumpm is the same as finding a
global maximum of the auxiliary problem. On the other hand, the auxiliary
problem is identical with the problem OneMax except that a larger sets of
points are global maxima.

So the problem of leaving the first phase is indeed easier than OneMax.
By Theorem 6.2, the (1+1) QEA and the (1+1) QEA∗ will both spend in
expectation at most linear time in the first phase.

Similarly, it is easy to see that again both, the (1+1) QEA and the
(1+1) QEA∗, will spend in expectation at most linear time in the second
phase.

For the third phase, we distinguish between the (1+1) QEA and the
(1+1) QEA∗. First we look at the (1+1) QEA∗. Given a search point
x ∈ {0, 1}n of fitness 2n − m, it will accept only the optimum as its next
search point. Thus, the expected optimization time for the third phase is
exactly rQSH(x). Since its Hamming weight is m, the progress probabil-
ity pRSH(x) of the corresponding (1+1) EA∗ is n−m (independently of the
choice of x). Thus, the runtime of the third phase is

rQSH(x) ∈ Θ
(
(rRSH(x))

1/2
)

= Θ
((
pRSH(x)

)−1/2)
= Θ

(
n
m/2
)
.

Since the other phases took at most linear time, for m > 1 the runtime of
the (1+1) QEA∗ is dominated by the third phase and is in Θ

(
nm/2

)
.

We now turn to the (1+1) QEA. Again, let x ∈ {0, 1}n be a search point
of Hamming weight m. This time, the situation is slightly more compli-
cated since the (1+1) QEA may accept any other search point of Hamming
weight m. We therefore again consider the corresponding (1+1) EA. The
probability that the mutation operator produces another search point of
Hamming weight m is in Θ(m/n) = Θ(1/n) by Lemma 6.13, since m is a
constant. On the other hand, the probability that the mutation operator
yields the optimum is in Θ(n−m). Therefore, the probability to jump to the
optimum subject to the condition that we accept the search point is

Pr (mut(x) = (0, . . . , 0) | Jumpm(mut(x)) ≤ m) ∈ Θ
(
n−(m−1)

)
.
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So we expect to visit Θ(nm−1) search points in the third phase. Moreover, for
all search points x of Hamming weight m, the progress probability pRSH(x)
of the (1+1) EA is in Θ(1/n). Therefore, by Theorem 5.11, the optimization
time T (3)

QSH for the third phase of the (1+1) QEA satisfies

E[T
(3)
QSH] ∈ Θ(µ

(3)
QSH)

with
µ

(3)
QSH =

∑
x : |x|1=m

m(x)(rRSH(x))
1/2.

We have already seen that

(rRSH(x))
1/2 ∈ Θ(n

1/2)

and that ∑
x : |x|1=m

m(x) ∈ Θ(nm−1).

Therefore, E[T
(3)
QSH] is in Θ(nm−1/2).

6.6 TinyTrap

Let d := 3n
2 log2 n

be an integer4 and let TinyTrap be the pseudo-Boolean
function that maps x ∈ {0, 1}n to

TinyTrap(x) :=

{
OneMax(x) , if OneMax(x) ≤ d− 1

−1 , else.
(6.7)

RLS and QLS with either selection strategy have unbounded runtime
minimizing TinyTrap, since the initial search point might be the local
minimum (0, . . . , 0). We therefore restrict ourselves to the different variants
of the (1 + 1)-EA.

Theorem 6.14. The runtime of the (1+1) EA and the (1+1) EA∗ mini-
mizing TinyTrap is at least 2n/4.

Proof. The following argument holds for both selection strategies. Consider
the event where the (1+1) EA starts in the local minimum (0, . . . , 0). To
leave this point, at least d of the bits have to be flipped which (by the union
bound) happens with probability at most(

n

d

)
·
(

1

n

)d
≤
(en

d

)d
·
(

1

n

)d
=

(
d

e

)−d
≤ n−5d/6 = 2−

5n/4

4For values of n where d is non-integral we can round d and obtain the same asymptotic
results.

39



since d/e ≥ n5/6 for sufficiently large n (and thus, sufficiently large d).
Therefore, conditioned on the event to start in (0, . . . , 0), the runtime of
the (1+1) EA is at least 25n/4 and since the probability to start in (0, . . . , 0)
is 2−n, the unconditional runtime is at least 2n/4 by the law of total expec-
tation.

Theorem 6.15. The runtime of the (1+1) QEA and the (1+1) QEA∗

minimizing TinyTrap is in O(1).

Proof. The following argument holds for both selection strategies. With
very high probability the first search point has Hamming weight at least d
in which case the runtime is 1. However, since en/d ≤ n1/12 for sufficiently
large n, there are at most

d−1∑
i=0

(
n

i

)
≤ n

(
n

d

)
≤ n

(en

d

)d
≤ n · nd/12 = n2

n/8

search points of Hamming weight at most d − 1. Hence, the probability
that the initial search point is one of them is at most n2−7n/8. Next, we
give an upper bound on the runtime of the (1+1) QEA conditioned on the
event that it is indeed initialized with one of these points. In this case, we
consider two phases, where the first phase ends when the (1+1) QEA has
either found the local minimum (0, . . . , 0) or a global optimum. Like in the
proof of Theorem 6.12, the length of this phase is dominated by the runtime
of the (1+1) QEA on OneMax which is in Θ(n).

At the beginning of the second phase, the (1+1) QEA either found a
global optimum (in this case we are done) or the current search point is the
local minimum (0, . . . , 0). For the corresponding (1+1) EA, the probabil-
ity to leave the local minimum (0, . . . , 0) is at least the probability to flip
exactly d of the zero-bits, that is(

n

d

)
·
(

1

n

)d
(1− 1/n)n−d ≥ 1

e
·
(n
d

)d
·
(

1

n

)d
≥ 1

e
· n−d =

1

e
· 2−3n/2.

Thus, the expected progress time rRSH((0, . . . , 0)) of the (1+1) EA is in
O(23n/2). Now, we recall that we are actually looking at the (1+1) QEA. By
Lemma 5.5, the expected progress time rQSH((0, . . . , 0)) of the (1+1) QEA
is at most O(23n/4). Note that this difference is the reason why the following
argument does not give runtime Θ(1) for the classical (1 + 1) EA as well.
However, for the (1+1) QEA we have just seen that the runtime, conditioned
on the event that the Hamming weight of the initial search point is at most
d−1, is in O(23n/4) (the runtime of the second phase dominates the runtime of
the first phase). Recall that the probability of the initial search point actually
satisfying this condition is only O(n2−7n/8). Hence, the total (unconditional)
runtime of the (1+1) QEA is in O(1 + n2−7n/8 · 23n/4) = O(1) by the law of
total expectation.
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7 Conclusion

In this paper, we have presented an approach to evolutionary algorithms
on a quantum computer where we keep the mutation and selection process
from the classical setting and use quantum probability amplification (Grover
search) in order to find an acceptable offspring more quickly. We show that
this does not affect the trajectory the algorithm takes on its way to an
optimal solution, the quantum amplification only speeds it up. Furthermore
our approach is universal, that is, it works for any mutation operator. We
also provide tools for estimating the runtime using parameters of the classical
heuristic.

For five of the six problems we investigated we encountered that using
quantum search gave at most a quadratic improvement over the correspond-
ing classical heuristic. This is similar to other general settings like unordered
search [6, 26] or query complexity of local search on a graph [1], in which it is
proven or conjectured that quantum computers can give at most a quadratic
speedup.

On the example of the function TinyTrap we saw that an exponential
runtime of a RSH may drop to polynomial, even to Θ(1) for the corre-
sponding QSH. However, keep in mind that this is due to the occurrence
of an highly unlikely event (starting in the trap region) and will hardly be
observed in a typical run. It is an interesting question whether such an im-
provement from exponential to polynomial runtime can also occur in less
artificial problems and in a typical run of a QSH.

The other analyzed examples OneMax, LeadingOnes, Discrepancy,
Needle, and Jumpm show that a substantial speedup is possible (as for
LeadingOnes) but is not guaranteed (as for Discrepancy). The harder it
is for the classical search heuristic to make progress, the better will quantum
acceleration work.

We have also seen that it is important to choose the selection strategy
carefully, since not only the runtime in the classical setting but also the
speedup due to quantum acceleration depends on the choice of the selection
strategy. The reason for the different results is that by allowing equality
of the objective functions we increase the number of valid successor states
and thus we increase the probability to find such a state. But quantum
enhancement is more powerful if these probabilities are small, as is illustrated
by Corollary 5.13. However, we believe there are ways to keep quantum
enhancement powerful and still allow the algorithm to move to a successor
state with unchanged objective value.

To conclude, we demonstrated a wide range of different behaviors of
the progressive and conservative versions of the (1+1) QEA and QLS on
a number of well-studied basic pseudo-Boolean functions. In the line of
this research, the next step would be to analyze the effects of quantum
acceleration on classical problems in combinatorial optimization.
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