
A

Testing Nilpotence of Galois Groups in Polynomial Time 1.

V. ARVIND, Institute of Mathematical Sciences,

CIT Campus, Chennai, India 600113.

arvind@imsc.res.in.

PIYUSH P KURUR2, Department of Computer Science and Engineering,

Indian Institute of Technology, Kanpur,

Kanpur, UP 208016, India.

ppk@cse.iitk.ac.in

We give the first polynomial-time algorithm for checking whether the Galois group Gal (f) of an input

polynomial f(X) ∈ Q[X] is nilpotent: the running time of our algorithm is bounded by a polynomial in
the size of the coefficients of f and the degree of f . Additionally, we give a deterministic polynomial-time

algorithm that, when given as input a polynomial f(X) ∈ Q[X] with nilpotent Galois group, computes for

each prime factor p of #Gal (f), a polynomial gp(X) ∈ Q[X] whose Galois group of is the p-Sylow subgroup
of Gal (f).

Categories and Subject Descriptors: F.2.1 [Numerical Algorithms and Problems]: Computations on

polynomials

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Galois group, nilpotence, univariate polynomials, polynomial time

1. INTRODUCTION

Computing the Galois group of a polynomial f(X) with rational coefficients is a fundamental
problem in algorithmic number theory. For a polynomial f(X) it is well known that the
Galois group Gal (f) acts faithfully as a permutation group on the roots of f(X). Thus,
for a polynomial f without repeated factors, we can think of the Galois group of f as a
group of permutations on the set of distinct roots of f . In this paper, by computing the
Galois group, we mean finding a generating set for the Galois group as a permutation
group. This characterizes the group only up to a relabeling of the roots. However, this gives
Gal (f) a compact representation because any subgroup of Sn has a generating set of size
at most n − 1 [Jerrum 1986]. Furthermore, since there is a substantial library of efficient
algorithms for permutation groups that takes as input subgroups of Sn given by generating
sets, this compact representation of Galois groups can be computationally useful. The book
by Seress [Ákos Seress 2003] contains a comprehensive treatment of permutation group
algorithms.

There are algorithms for computing the Galois group of polynomials over rationals that
even go back to the nineteenth century [Tschebotaröw and Schwerdtfeger 1950]. However,
no general polynomial-time algorithm for this problem is known to date. Asymptotically,
the best known algorithm is due to Landau [Landau 1984]: given a polynomial f(X), as
a list of its coefficients in binary, it takes time polynomial in its input size and the order
of Galois group of f . Landau’s algorithm explicitly lists all elements of its Galois group
Gal (f). However, for a degree n polynomial f(X), Gal (f) can have n! many elements.
Hence, Landau’s algorithm takes exponential time in the worst case. It is a long standing
open problem if there is an asymptotically faster algorithm. Lenstra’s survey [Lenstra Jr.
1992] discusses this and related problems.

1preliminary version of this paper was presented at the MFCS 2006 conference [Arvind and Kurur 2006](see
also [Kurur 2006])
2Most of the work was done as a Ph.D student at the Institute of Mathematical Sciences.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

In the absence of efficient asymptotic algorithms, considerable research has gone
into designing practical algorithms for Galois group computation. The work of
Stauduhar [Stauduhar 1973] describes an algorithm that could compute the Galois group
of polynomials up to degree 8. Recent implementations with the computer algebra software
KANT apparently work up to degree 15. This method is described in detail by Cohen [Cohen
1993]. Stauduhar’s method has the drawback of precision problems as it involves numerical
approximation of the roots of the polynomial. Instead of the numerical approximation, us-
ing p-adic approximation Geissler and Klüners [Geissler and Klüners 2000] gave a variant
of Stauduhar’s algorithm that could work for polynomials up to degree 15. Another well-
studied practical method [Soicher and McKay 1985; Mattman and McKay 1985], which
avoids the precision problems due to root approximations, works by computing certain
invariants called the absolute resolvents of the given polynomial. However, this approach
has the drawback of being computationally more intensive as it involves factoring of very
large degree resolvent polynomials. An entire special issue [Matzat et al. 2000] is devoted
to algorithmic Galois theory, with practical implementations as the main goal.

Although computing the Galois group of a polynomial remains hard in general, often it
is sufficient to check whether the Galois group satisfies some specific property. Knowing
the nature of the Galois group of a polynomial can provide insight into the structure of
the roots of the polynomial. There is no better example than the celebrated work of Galois
[Galois 1830a; 1830b] in which he shows that a polynomial f(X) over rationals is solvable
by radicals if and only if its Galois group is solvable.

In this paper we study the problem of testing nilpotence of the Galois group of a polyno-
mial f(X) over Q. Landau’s algorithm [Landau 1984] to compute the Galois group, although
exponential in general, yields efficient algorithms in certain cases. For example, we can test
whether the Galois group is abelian [Landau 1984] in polynomial time. We give a quick
overview. Assume that the input polynomial f(X) is irreducible; otherwise factor f(X) by
applying the LLL algorithm [Lenstra et al. 1982] and test whether the Galois group of each
of its irreducible factors is abelian. Since the Galois group of f(X) is a subgroup of the direct
product of the Galois groups of each of its irreducible factors, this is clearly sufficient. Any
abelian transitive group of Sn is of order n. Hence, if the input polynomial is irreducible
and abelian then its Galois group is polynomially bounded. One can use Landau’s algo-
rithm [Landau 1984] and compute the Galois group explicitly and verify that it is abelian.
Similarly, for solvability and nilpotence test, we can assume that the input polynomial is
irreducible. However, transitive solvable subgroups of Sn can be of size exponential in n.
As far as efficient algorithms are concerned, this does not give a satisfactory answer to
the problem of checking whether a given polynomial is solvable by radicals. Landau and
Miller made a remarkable breakthrough by giving a polynomial-time algorithm for checking
whether the Galois group of an input polynomial is solvable[Landau and Miller 1985].

The class of nilpotent groups is a subclass of the class of solvable groups that contains
the class of abelian groups. Just as in the case of solvable groups, transitive nilpotent
subgroups of Sn can have order exponential in n. This rules out a nilpotence test which
explicitly computes the Galois group. Besides, the Landau-Miller solvability test does not
give a nilpotence test. A key idea used in the Landau-Miller algorithm is to reduce the
problem of checking the solvability of the Galois group G of the input polynomial into
checking the the solvability of each factor group Gi−1/Gi in some special composition series
G = G0 � . . . � Gn = 1 of G. Despite each of the groups Gi being large, Landau-Miller
could compute enough information of the factor groups Gi−1/Gi implicitly from the input
polynomial. However, one cannot infer nilpotence of G, even if all the factor groups Gi−1/Gi
are given explicitly. The simplest example that illustrates this are the groups S3 and Z2×Z3.
The factor groups are Z2 and Z3 in the composition series for both the groups. However,
S3 is not nilpotent (though it is solvable) and Z2 × Z3 is nilpotent (even cyclic). Thus, the

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

composition factors a group alone do not suffice to determine if it is solvable or nilpotent
or even abelian.

Overview of our result

We give the first deterministic polynomial-time algorithm for testing whether the Galois
group of an input polynomial f(X) ∈ Q[X] is nilpotent. The running time of our algorithm
is bounded by a polynomial in size (f) and thus is polynomial in the input size. Although
our algorithm is polynomial time, it is unlikely to perform well in practise as it involves
factoring polynomials over number fields. Testing nilpotence has been addressed before from
the point of view of developing practical algorithms. For example, Fernandez-Ferreiros and
Molleda [Fernandez-Ferreiros and Gomez-Molleda 2003] have given an algorithm for testing
nilpotence by computing the centre of the Galois group of f . A key step in their algorithm,
based on the Chebotarev density theorem, is to pick primes whose Frobenius give elements
in the centre of Gal (f). However, the worst case running time of this algorithm is polynomial
in size (f) and the order #Gal (f) of the Galois group which is exponential in the input
size.

We now give a brief overview of the main idea behind our algorithm. The main ob-
servations that lead to the polynomial-time algorithm are Theorems 5.9 and 5.10, which
together give a characterisation of transitive nilpotent permutation groups in terms of its
block structure. Explicitly testing for this characterisation will require us to compute the
Galois group and hence is infeasible. As in the Landau-Miller solvability test, however, we
test this implicitly.

The normality of Sylow subgroups of nilpotent groups plays an important role in the
proof of Theorems 5.9 and 5.10. As a byproduct of our main result we obtain the following
additional polynomial-time algorithm: given a polynomial f(X) ∈ Q[X] with nilpotent
Galois group, for each prime factor p of #Gal (f) we can efficiently compute a polynomial
gp(X) such that the Galois group Gal (gp(X)) is the p-Sylow subgroup of Gal (f).

2. GALOIS THEORY OVERVIEW

In this section we recall some basic Galois theory. A detailed presentation is available in a
standard algebra textbook, like Lang’s book [Lang 1999]. Let L and K be fields. We say that
L is an extension of K and denote it by L/K if L ⊇ K. For an extension L/K, L is a vector
space over K and by the degree of L/K, denoted by [L : K], we mean its dimension. An
extension L/K is finite if its degree [L : K] is finite. If L/M and M/K are finite extensions
then [L : K] = [L : M].[M : K]. The ring of polynomials over K with indeterminate X will
be denoted by K[X]. This ring is a unique factorisation domain.

An element α in an extension L of K is algebraic if there is a polynomial f(X) over K
such that f(α) = 0. For such an α the minimal polynomial over K is the unique monic
polynomial µα[K](X) over K of least degree for which α is a root. We write µα(X) for
µα[K](X) when K is understood. Elements α and β in L are conjugates over K if they have
the same minimal polynomial over K. The smallest subfield of L containing K and α is
denoted by K(α). If α is algebraic over K then the field K(α) is isomorphic to the quotient
K[X]/µα[X].

Let f(X) be a polynomial over K. By the splitting field of f over K, denoted by Kf we
mean the smallest extension of K containing all the roots of f . A finite extension L/K is
normal if for all irreducible polynomials f(X) over K, either f(X) splits or has no root in
L. Any finite normal extension over K is the splitting field of some polynomial in K[X].
An extension L/K is separable if for all irreducible polynomials f(X) ∈ K[X] there are no
multiple roots in L. A normal and separable finite extension L/K is a Galois extension.

The Galois group of L/K, denoted by Gal (L/K), is the subgroup of automorphisms σ
of L that leaves K fixed, i.e. σ(α) = α for all α ∈ K. The Galois group of a polynomial
f(X) over K, denoted by Gal (f), is the Galois group Gal (Kf/K) of its splitting field. For

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

a subgroup G of automorphisms of L, the fixed field LG is the largest subfield of L fixed
by G. We now state the fundamental theorem of Galois theory [Lang 1999, Theorem 1.1,
Chapter VI].

Theorem 2.1 (Fundamental theorem of Galois theory). Let L/K be a Galois
extension with Galois group G. Let F be the set of fields E between L and K, i.e. L ⊇ E ⊇ K
and let G be the set of subgroups of G. Then, the maps E 7→ Gal (L/E) and H 7→ LH are
inverses of each other and thus gives a one-to-one correspondence. Furthermore, for any
field E ∈ F , the extension E/K is Galois if and only if the corresponding Galois group
Gal (L/E) is a normal subgroup of G. For the Galois extension E/K, E ∈ F , the Galois
group Gal (E/K) is (isomorphic to) the quotient group G/Gal (L/E).

A number field is a finite extension of Q. By the degree of a number field K we mean [K :
Q], i.e. the degree of K as an extension of Q. An algebraic number is a root of a polynomial
over Q and an algebraic integer is an algebraic number whose minimal polynomial has
integral coefficients. Let K be a number field. A primitive element η of K is an algebraic
number such that K = Q(η). A polynomial µ(X) over Q is a primitive polynomial for K if
K = Q[X]/µ(X). By the primitive element theorem [Lang 1999, Theorem 4.6, Chapter V]
every number field has a primitive element. Furthermore, we can assume that this primitive
element is an algebraic integer [Lang 1999, Proposition 1.1, Chapter VII] (also refer to
[van der Waerden 1991]). Thus any number field is isomorphic to the quotient Q[X]/µ(X)
where µ(X) is a monic irreducible polynomial with integral coefficients.

2.1. Input and Output Representations

The inputs and outputs of the algorithms we describe in this paper are objects like algebraic
numbers, number fields, Galois groups etc. In this section we discuss suitable encodings of
these objects into strings. The complexity of our algorithms are measured in terms of the
sizes of these encodings. We use notation size (.) to denote the number of bits required to
represent an object.

Integers are encoded in binary and hence for an integer n, its size is given by size (n) =
log n. A rational number r is encoded as a pair of relatively prime integers a and b such that
r = a

b . The size of r is therefore O(size (a)+size (b)). A polynomial T (X) = a0+. . .+anX
n ∈

Q[X] is given by a list of its coefficients. Thus, size (T) is defined as O (n+
∑
i size (ai)).

We now discuss how number fields are encoded. Recall that any number field can be
expressed as a quotient Q[X]/µ(X) where µ(X) is a primitive polynomial. We assume that
a number field K is represented by giving a primitive polynomial µ(X) for it. In addition
we will assume that µ(X) is monic with integral coefficients. Thus the size of K under this
representation is the size of the polynomial µ(X). Notice that the size of K depends on the
primitive polynomial chosen to represent K.

Let K = Q(η) be a number field of degree n represented via a primitive polynomial
µη(X). Any algebraic number α in K can be expressed uniquely as α = Aα(η) where
Aα(X) is a polynomial over Q of degree less than n. By size (α) we mean size (Aα(X)).
Again the size of α depends on the chosen primitive element η of K. For a polynomial
f(X) = a0 + . . .+ amX

m in K[X] we define size (f) to be
∑

size (ai).
Let f(X) be a polynomial of degree n over Q. Landau’s algorithm [Landau 1984] for

computing its Galois group Gal (f), computes the entire multiplication table. Such an algo-
rithm, in the worst case, will take time exponential in size (f) as the order of Gal (f) can be
as large as n!. As mentioned in the introduction, we can consider Gal (f) as a permutation
group on the roots of f and succinctly represent it by n− 1 many generating permutations
[Luks 1993]. This gives Gal (f) a representation of size polynomial in n and it makes sense
to ask if Gal (f) in this representation is computable in polynomial time. This is an open
problem.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

2.2. An algorithm for computing primitive elements

The proof of the primitive element theorem is algorithmic. Many algorithms in computa-
tional number theory make use of this algorithmic version. In order to keep the present
paper self-contained, we give an algorithmic proof for a version of the theorem suitable for
our purpose. We first recall a key lemma whose proof can be found in van der Waerden’s
book [van der Waerden 1991].

Lemma 2.2. Let α and β be algebraic numbers with conjugates α(i), 1 ≤ i ≤ m, and β(j),
1 ≤ j ≤ n respectively. Let c ∈ Z such that α(i) + cβ(j) 6= α(r) + cβ(r) for all (i, j) 6= (r, s)
then Q(α+ cβ) = Q(α, β). In particular, there is a positive integer c ∈ {1, 2, . . . ,m2n2 + 1}
such that Q(α+ cβ) = Q(α, β).

Next, we give an algorithm to compute minimal polynomial [Shoup 1999].

Lemma 2.3. Let α be an algebraic number with minimal polynomial f(X) ∈ Q[X].
Given a polynomial g(X) ∈ Q[X] we can find the minimal polynomial for the element
g(α) ∈ Q(α) in time polynomial in size (f) + size (g).

Proof. Let the degree of f be n and let β = g(α). Our task is to compute the minimal
polynomial µβ(X) of β. Let m be the degree of the polynomial µβ(X). Since β is an element
of Q(α), the degree m of its minimal polynomial is less than n. Furthermore, m is the least
integer i less than n such that the set of powers {1, β, . . . , βi−1, βi} is linearly dependent as
vectors over Q. As β = g(α), the set {1, . . . , βi} is linearly dependent if and only if there
are aj ∈ Q such that

gi(X) +

i−1∑
j=0

ajg
j(X) = 0 mod f(X). (1)

Equating the coefficients of X in equation 1 gives us a system of linear equations in aj ’s,
which can be checked for feasibility in time polynomial in size (f) + size (g) using Gaussian
elimination for example. Starting with i = 0 we find the least i for which equation 1 is
feasible. Having found the least i, which is also the degree m of µβ(X), we solve for the
unknowns aj . Clearly µβ(X) is the polynomial Xm + am−1X

m−1 + . . .+ a1X + a0.

In the next lemma we prove an algorithmic version of the primitive element theorem.

Lemma 2.4. Let α be an algebraic number with minimal polynomial f(X) ∈ Q[X] of de-
gree n. Let γ1, . . . , γk be algebraic numbers in Q(α) given as polynomials γi = gi(α), 1 ≤ i ≤
k, and let K = Q(γ1, . . . , γk) be the subfield of Q(α) generated by γ1, . . . , γk. There is a de-

terministic algorithm with running time bounded by a polynomial in size (f)+
∑k
i=1 size (gi)

that computes a polynomial g(X) ∈ Q[X] such that g(α) is a primitive element for K.

Proof. Consider the tower of fields Q ⊆ Q(γ1) ⊆ . . . ⊆ Q(γ1, . . . , γk) = K. Our task is
to compute a primitive element for K. For every 1 ≤ i ≤ k, we will compute polynomials
hi(X) ∈ Q[X] such that ηi = hi(α) is a primitive element of the subfield Q(γ1, . . . , γi).

For i = 1 choose h1(X) = g1(X) and η1 = γ1. Inductively assume that we have computed
hi(X) such that ηi = hi(α) is a primitive element of the field Q(γ1, . . . , γi). Consider the
field Q(ηi, γi+1). As ηi and γi+1 are elements of Q(α), their degrees are less than n. By
Lemma 2.2 there is an integer ci+1 ∈ {1, . . . , n4 + 1} such that ηi + ci+1γi+1 is a primitive
element for the field Q(ηi, γi+1) = Q(γ1, . . . , γi+1).

We now explain how such a constant ci+1 can be computed. For a given c, to check
whether ηi + cγi+1 is a primitive element of Q(ηi, γi+1) it suffices to check whether there
are polynomials A(X) and B(X) of degree at most n such that A(ηi + cγi+1) = ηi and
B(ηi + cγi+1) = γi+1. This can be done by checking whether the following equations are

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

feasible for unknowns aj and bj .

n−1∑
j=0

aj(hi(X) + cgi+1(X))j = hi(X) mod f(X)

n−1∑
j=0

bj(hi(X) + cgi+1(X))j = gi+1(X) mod f(X)

Equating the coefficients of X, this involves checking feasibility of a system of linear
equations over Q and thus can be done in time polynomial in size (hi)+size (gi+1)+size (f).
We go over all 1 ≤ c ≤ n4 + 1 and let ci+1 be the least c for which the above equations
are feasible. The required polynomial hi+1(X) is given by hi+1(X) = hi(X) + ci+1gi+1(X).
Finally, hk(α) is a primitive element for K. The overall running time for the algorithm is

bounded by a polynomial in the size of size (f) +
∑k
j=1 size (gj).

Remark 2.5. A similar algorithm can be designed that takes as input the minimal
polynomials gi(X) ∈ Q[X] of the algebraic numbers γi respectively, for 1 ≤ i ≤ k and
computes a primitive element for the field K = Q(γ1, . . . , γk). The running time for this
algorithm is polynomial in [K : Q] and the sizes of the minimal polynomials gi(X).

3. PREVIOUS COMPLEXITY RESULTS

We now state some of the known results in computational Galois theory formally. The
following result for computing the Galois group of a polynomial f(X) that runs in time
polynomial in the size of the Galois group and f(X) is due to Landau [Landau 1984].

Theorem 3.1 (Landau). There is a deterministic algorithm that takes as input a num-
ber field K, a polynomial f(X) ∈ K[X] and a positive integer b in unary, and in time
bounded by size (f), size (K) and b, decides if Gal (Kf/K) has at most b elements, and if so
computes Gal (Kf/K) by finding the entire multiplication table of Gal (Kf/K) (and hence
also by giving the generating set of Gal (Kf/K) as a permutation group on the roots of
f(X)).

The algorithm first computes a primitive element θ of Kf . Determining Gal (f) amounts
to finding the action of the automorphisms on θ. Subsequently, Landau and Miller [Landau
and Miller 1985] gave their polynomial-time solvability test.

Theorem 3.2 (Landau-Miller). There is a deterministic polynomial-time algorithm
that takes as input a polynomial f(X) ∈ Q[X] and tests if the Galois group Gal (f) of f is
solvable.

A byproduct of the Landau-Miller algorithm is an algorithm to compute the primes that
divide the order of the Galois group. We summaries this result for use latter on.

Theorem 3.3 (Landau-Miller). There is a deterministic polynomial-time algorithm
that takes as input a polynomial f(X) over Q and, if f(X) is solvable by radicals, computes
the prime factors of #Gal (f).

Thus one can also check in deterministic polynomial time whether the Galois group is a
p-group.

4. GROUP THEORETICAL PRELIMINARIES

We recall some group theory. Details can be found in Marshall Hall’s text [Hall Jr. 1959,
Chapter 10]. Let G be any group. The lower central series of G is the sequence of groups
G = G0 ≥ G1 . . . ≥ Gn ≥ . . . where Gi+1 = [Gi, G]. A group G is said to be nilpotent
if its lower central series is of finite length, i.e. Gc = {1} for some nonnegative integer c,

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

where 1 denotes the identity element. The least c such that Gc = {1} is called the class of
nilpotence of a nilpotent group G. If the group G is finite then it is nilpotent if and only if
all its p-Sylow subgroups are normal. It follows from Sylow’s theorem that a finite nilpotent
group is a product of its p-Sylow subgroups. It is this characterisation of finite nilpotent
groups that will be useful for us in our nilpotence test.

We recall some permutation group theory from Wielandt’s book [Wielandt 1964]. Let Ω
be a finite set. The symmetric group Sym (Ω) is the group of all permutations on Ω. By a
permutation group on Ω we mean a subgroup of Sym (Ω). For α ∈ Ω and g ∈ Sym (Ω), let
αg denote the image of α under the permutation g. For A ⊆ Sym (Ω), αA denotes the set
{αg : g ∈ A}. In particular, for G ≤ Sym (Ω) the G-orbit containing α is αG. The G-orbits
form a partition of Ω. Given G ≤ Sym (Ω) by a generating set A and α ∈ Ω, there is a
polynomial-time algorithm to compute αG [Luks 1993].

Sometimes we need to consider a more general group action on a set Ω. In the generalised
setting, we say G acts on Ω if there is a group homomorphism ϕ : G −→ Sym (Ω). The
kernel Ker(ϕ) of this action is the subgroup of G whose image under ϕ is the identity
element (which pointwise fixes Ω). If Ker(ϕ) is trivial we say that the action is faithful. In
this paper, when we say G is a permutation group on a set Ω we mean a faithful action
unless explicitly stated. The only exceptions arise when we restrict the group G to a subset
of Ω, typically an orbit or a block.

For ∆ ⊆ Ω and g ∈ Sym (Ω), ∆g denotes {αg : α ∈ ∆}. The set-wise stabilizer of ∆, i.e.
{g ∈ G : ∆g = ∆}, is denoted by G∆. If ∆ is the singleton set {α} we write Gα instead
of G{α}. An often used result is the orbit-stabilizer formula stated below [Wielandt 1964,
Theorem 3.2].

Theorem 4.1 (Orbit-stabilizer formula). Let G ≤ Sym (Ω) be a permutation
group and let α be any element of Ω then the order of the group G is given by #G =
#Gα ·#αG.

A permutation group G ≤ Sym (Ω) is transitive if there is a single G-orbit. Suppose
G ≤ Sym (Ω) is transitive. Then a non-empty subset ∆ of Ω is a G-block if for all g ∈ G
either ∆g = ∆ or ∆g ∩∆ = ∅. For every G, Ω is a block and each singleton {α} is a block.
These are the trivial blocks of G. A transitive group G is primitive if it has only trivial
blocks and it is imprimitive if it has nontrivial blocks. We state a useful proposition that is
easy to prove from these definitions.

Proposition 4.2. Let G ≤ Sym (Ω) be a transitive permutation group.

(a) If ∆ ⊂ Ω is a G-block then G∆ is transitive on ∆. I.e. for α, β ∈ ∆ there is a g ∈ G∆

such that αg = β.
(b) Let Σ ⊂ Ω be a G-block. Then ∆ ⊂ Σ is a G-block if and only if ∆ is a GΣ-block.

A G-block ∆ is a maximal subblock of a G-block Σ if ∆ ⊂ Σ and there is no G-block Υ
such that ∆ ⊂ Υ ⊂ Ω. Let ∆ and Σ be two G-blocks. A chain ∆ = ∆0 ⊂ . . . ⊂ ∆t = Σ is a
maximal chain of G-blocks between ∆ and Σ if for all i, ∆i is a maximal subblock of ∆i+1.

For a G-block ∆ and g ∈ G, ∆g is also a G-block and #∆ = #∆g. Let ∆ and Σ be two
G-blocks such that ∆ ⊆ Σ. The ∆-block system of Σ, is the collection

B (Σ/∆) = {∆g : g ∈ G and ∆g ⊆ Σ}.

The set B (Σ/∆) is a partition of Σ. It follows that #∆ divides #Σ and by index of ∆ in

Σ, which we denote by [Σ : ∆], we mean #B (Σ/∆) = #Σ
#∆ . We will use B (∆) to denote

B (Ω/∆). We state the connection between blocks and subgroups [Wielandt 1964, Theorem
7.5].

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

Theorem 4.3 (Galois correspondence of blocks). Let G ≤ Sym (Ω) be transi-
tive and α ∈ Ω. For G ≥ H ≥ Gα the orbit ∆ = αH is a G-block and G∆ = H. The
correspondence αH = ∆
 G∆ = H is a one-to-one correspondence between G-blocks ∆
containing α and subgroups H of G containing Gα. Furthermore for G-blocks ∆ ⊆ Σ we
have [GΣ : G∆] = [Σ : ∆].

Let G ≤ Sym (Ω) be transitive and ∆ and Σ be two G-blocks such that ∆ ⊆ Σ. Let
G (Σ/∆) denote the group {g ∈ G : Υg = Υ for all Υ ∈ B (Σ/∆)}. We write G∆ for the
group G (Ω/∆). The next three lemmas are well known in the permutation group theory
community, however we prove them here for completeness and to fix the notation.

Lemma 4.4. Let G ≤ Sym (Ω) be a permutation group and let ∆ and Σ be two G-blocks
such that Σ ⊇ ∆. Then

(1) The group G (Σ/∆) is the largest normal subgroup of GΣ contained in G∆. In particular,
G∆ is a normal subgroup of G.

(2) The quotient group GΣ/G (Σ/∆) is a faithful permutation group on B (Σ/∆) and is
primitive when ∆ is a maximal subblock.

Proof. For any g ∈ GΣ, since g set-wise stabilises Σ, g permutes the elements of

B (Σ/∆). Hence for any Υ ∈ B (Σ/∆) we have Υg−1G(Σ/∆)g = Υ. Thus, G (Σ/∆) is a normal
subgroup of GΣ.

Now consider any N ⊆ G∆ which is a normal subgroup of GΣ. Since ∆N = ∆, and
since GΣ acts transitively on B (Σ/∆), for any Υ ∈ B (Σ/∆) there is a g ∈ GΣ such that
Υ = ∆g. Therefore, ΥN = ∆gN = ∆Ng = Υ for each Υ ∈ B (Σ/∆). Thus N ⊆ G (Σ/∆).
Since G (Σ/∆) �GΣ we have proved part 1.

Consider the action of GΣ on B (Σ/∆). Clearly, G (Σ/∆) is the kernel in this action.
Therefore GΣ/G (Σ/∆) acts faithfully on B (Σ/∆). Notice that GΣ is transitive on B (Σ/∆)
as it is transitive on Σ. Further it can be easily verified that nontrivial GΣ/G (Σ/∆)-blocks
of B (Σ/∆) are in 1-1 correspondence with the G-blocks Γ such that ∆ ⊂ Γ ⊂ Σ. Thus,
GΣ/G (Σ/∆) is primitive if and only if ∆ is a maximal subblock of Σ.

In our algorithms, we often need to check certain properties of the groups G∆ and G∆.
The group G in this context is the Galois group of the input polynomial f and ∆ is a
G-block on its action on the roots of f . However, explicit computation of these groups are
impossible in polynomial time. The next lemma helps us reduce this problem to the study
of certain natural quotient groups.

Lemma 4.5. Let G ≤ Sym (Ω) be a permutation group. Let ∆ and Σ be two G-block
such that ∆ ⊆ Σ. Then the quotient group GΣ/G∆ can be embedded into the product group

(GΣ/G (Σ/∆))
l

for some positive integer l.

Proof.
For the proof, let the Σ-block system B (Σ) be {Σ1, . . . ,Σm} where Σ = Σ1. Notice that

GΣi = GΣ = GΣj for all 1 ≤ i ≤ j ≤ m. Let ∆ = ∆1, . . . ,∆m be any m elements of the
∆-block system B (∆) such that ∆i ⊆ Σi.

Consider the action of GΣ on B (∆). Clearly the kernel of this action is G∆. Therefore, the
quotient group H = GΣ/G∆ acts faithfully on B (∆). Notice that the orbits under the action
are precisely B (Σi/∆i) for 1 ≤ i ≤ m. It is thus easy to see that H can be embedded in the
product

∏
Hi where Hi is the restriction of H on to B (Σi/∆i). Notice that GΣ ⊆ GΣi

for
all i and the kernel of the action of GΣi

on B (Σi/∆i) is G (Σi/∆i) (Lemma 4.4). Therefore,
GΣ/G∆ can be embedded into a subgroup of the product group

∏
iGΣi

/G (Σi/∆i). The

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

lemma then follows from the fact that GΣi is isomorphic to GΣ (in fact GΣi and GΣ are
G-conjugates) and G (Σ/∆) is isomorphic to G (Σi/∆i).

The next lemma connects orbits of normal subgroups and blocks.

Lemma 4.6. Let G ≤ Sym (Ω) be transitive and N � G. Let α ∈ Ω. Then the N -orbit
αN is a G-block and the collection of N -orbits is an αN -block system of Ω under G action.
If N 6= {1} then #αN > 1. Furthermore, if Gα ≤ N 6= G then the αN -block system is
nontrivial implying that G is not primitive.

Proof. Let α ∈ Ω and g ∈ G. If β = αg then the set (αN)g = αNg = αgN = βN .
Thus (αN)g and αN are N -orbits, and hence are identical or disjoint. So, αN is a G-block
and the N -orbits form the αN -block system of G. If #αN = 1 then all the N orbits are of
cardinality 1 and hence N fixes all element of Ω. This is possible if and only if N = 1.

Finally, suppose that Gα ≤ N . Then by the Orbit-Stabilizer formula (Theorem 4.1)
#G = #Ω · #Gα and #N = #αN · #Gα. Thus, if {1} 6= N 6= G and Gα ≤ N then
1 < #αN < #Ω and hence αN is a nontrivial G-block.

5. NILPOTENT PERMUTATION GROUPS

In this section, we prove some properties of transitive nilpotent groups that will be required
for our nilpotence test. Recall that a finite group G is nilpotent if and only if for all prime
factors p of #G, there is a unique normal p-Sylow subgroup for G. Let Gp denote this
unique p-Sylow subgroup of G. Any orbit of the Sylow subgroup Gp is a G-block as Gp is
normal in G (Lemma 4.6). These blocks play a crucial role in our nilpotence test and hence
we give them a name.

Definition 5.1 (Sylow blocks). Let G be a transitive nilpotent permutation group on Ω
and let p be a prime dividing the order of G. A subset of Ω is called a p-Sylow block of G
if it is an orbit of the p-Sylow subgroup Gp.

We prove the following lemma about Sylow blocks.

Lemma 5.2. Let G ≤ Sym (Ω) be a transitive nilpotent permutation group. For every
prime p that divides #G any p-Sylow block is of cardinality pl for some l > 0.

Proof. Let Σ ⊆ Ω be any p-Sylow block. Since Σ is an orbit of a nontrivial normal
subgroup Gp of G, by Lemma 4.6, we have #Σ > 1. Furthermore if α is any element in Σ,
since Σ = αGp by the orbit-stabiliser formula (Theorem 4.1) we have #Σ ·#(Gp)α = #Gp.
Hence #Σ is a power of p. So, #Σ = pl for some l > 0.

We now prove the following lemma about the cardinality of Sylow blocks.

Lemma 5.3. Let G ≤ Sym (Ω) be a transitive nilpotent permutation group. For any
prime p, p divides #G if and only if it divides #Ω, and for any p-Sylow block Σ of G, #Σ
is the highest power of p that divides #Ω.

Proof. Consider any α ∈ Ω. Since G is transitive, we known that αG = Ω. By the
orbit-stabiliser theorem (Theorem 4.1) we have #Ω · #Gα = #G. Therefore, every prime
factor of #Ω divides #G. Conversely, if p divides #G then for any p-Sylow block Σ, p
divides #Σ by Lemma 5.2. Hence p divides #Ω (a consequence of Theorem 4.3 for blocks
Ω and Σ).

We now prove that the cardinality of the p-Sylow block Σ is the highest power of p that
divides #Ω. Consider the blocks Ω and Σ. By Theorem 4.3 we have [Ω : Σ] = [G : GΣ].

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

Since Σ is a Gp orbit we have Gp ≤ GΣ and hence p does not divide [G : GΣ]. So, p does

not divide [Ω : Σ] = #Ω
#Σ .

As mentioned before, the Sylow blocks play an important role in our algorithm. The
fact that any Sylow block Σ has prime power cardinality helps us in studying the Sylow
subgroups of GΣ. We prove the following lemma about any block of prime power cardinality.

Lemma 5.4. Let G ≤ Sym (Ω) be a transitive nilpotent permutation group. Let ∆ be
any G-block such that #∆ is a power of a prime p and let q 6= p be another prime dividing
#G. Let G∆,q denote the q-Sylow subgroup of G∆. Then G∆,q fixes all points of the block
∆ (i.e. for all g in G∆,q and α in ∆, αg = α). As a result the q-Sylow subgroups G∆,q and
Gα,q are equal.

Proof. Let α ∈ ∆. Consider the blocks ∆ and {α}. By Theorem 4.3 we have Gα ≤ G∆,
and the index [G∆ : Gα] = #∆ is a power of p. Consequently, for a prime q 6= p the
highest power of q that divides #Gα and #G∆ are same, say qr. Further, note that both
G∆ and Gα are nilpotent as they are subgroups of a nilpotent group G. Therefore, they
have unique q-Sylow subgroups G∆,q and Gα,q, respectively which must be of size qr. Hence
G∆,q = Gα,q, implying that αg = α for all g ∈ Gα,q.

We derive an important consequence of Lemma 5.4.

Lemma 5.5. Let G ≤ Sym (Ω) be a transitive nilpotent permutation group and Σ be any
p-Sylow block of G. The group GΣ is the (unique) p-Sylow subgroup Gp of G.

Proof. Recall that Σ is an orbit of Gp and the Σ-block system B (Σ) is the collection
of all Gp-orbits and hence all p-Sylow blocks of G. Therefore, for all Γ ∈ B (Σ), we have
ΓGp = Γ and hence Gp ≤ GΣ. The group GΣ being a subgroup of a nilpotent group G
is itself nilpotent and is therefore the product of its Sylow subgroups. So, to prove that
GΣ = Gp it is sufficient to prove that for all primes q 6= p the q-Sylow subgroup GΣ

q of GΣ

is trivial.
Note that GΣ =

⋂
Γ∈B(Σ)GΓ. Hence, GΣ

q ≤ GΓ,q for all Γ ∈ B (Σ) and by Lemma 5.4 it

follows that for all g in GΣ
q and α ∈ Γ we have αg = α. Since

⋃
Γ∈B(Σ) Γ = Ω, for all α in Ω

and g in GΣ
q , αg = α. This is only possible if GΣ

q is the trivial group {1}.
We now show that the subblock structure of G under a p-Sylow block is similar to the

subblock structure of a transitive p-group.

Lemma 5.6. Let G ≤ Sym (Ω) be a transitive nilpotent permutation group and let p be
a prime factor of #G. Let Σ be any p-Sylow block of G then for any subset ∆ ⊆ Σ, ∆ is a
G-block if and only if ∆ is Gp-block under the transitive action of Gp on Σ.

Proof. Clearly if ∆ ⊆ Σ is a G-block then it is also a Gp-block as Gp ≤ G.
Conversely, suppose ∆ is a Gp-block. We first argue that ∆ is a GΣ-block. Recall that

Gp is the p-Sylow subgroup of GΣ as well, and by Lemma 5.4 for a prime q 6= p the q-Sylow
subgroups of GΣ pointwise fix each element of Σ (and hence each element of ∆). Since GΣ is
a product of its Sylow subgroups, it follows that ∆ is a GΣ-block. Hence, by Proposition 4.2
∆ is a G-block as well.

The previous lemma indicates that to study the subblock structure under a p-Sylow block
it is sufficient to understand the subblock structure of a transitive p-group. We now recall
a result about blocks of transitive p-groups (see e.g. Luks [Luks 1982, Lemma 1.1]).

Lemma 5.7. Let G ≤ Sym (Ω) be a transitive permutation p-group and ∆ be a maximal
G-block. Then [Ω : ∆] = p and the group G∆ is a normal subgroup of G with the quotient
group G/G∆ being the cyclic group of order p.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

The above lemma has the following corollary.

Corollary 5.8. Let G be a transitive permutation p-group on Ω and let ∆ be any
G-block. Suppose that Γ is a minimal G-block containing ∆ then [Γ : ∆] = p and G∆ is a
normal subgroup of GΓ with quotient GΓ/G∆ a cyclic group of order p.

Proof. Consider the transitive action of GΓ on Γ. If ∆′ is any GΓ-block between Γ
and ∆ then G∆ ≤ G∆′ ≤ GΓ. Hence by Theorem 4.3, ∆′ is a G-block. This contradicts
the minimality of Γ. So, ∆ is a maximal GΓ block of Γ. The corollary then follows from
Lemma 5.7 for the group GΓ.

We now translate the above result on the block structure of a p-group into that of a
nilpotent group.

Theorem 5.9. Let G be any transitive nilpotent group on Ω and let p be a prime
dividing #G (and hence #Ω). Let pm be the highest power of p that divides #Ω and let ∆
be a G-block of cardinality a power of p. Then there is a p-Sylow block Σ such that ∆ ⊆ Σ.
Furthermore, if #∆ < pm then for any minimal G-block ∆′ such that ∆ ⊂ ∆′ ⊆ Σ we have:

(1) The index of the blocks [∆′ : ∆] is p,
(2) The group G∆ is a normal subgroup of G∆′ and
(3) The quotient group G∆′/G∆ is the cyclic group of order p.

Proof. First we show that ∆ is a subset of a p-Sylow block. Let α be any element of ∆
and let Σ be the p-Sylow block αGp . We claim that ∆ ⊆ Σ. By Proposition 4.2, ∆ = αG∆ .
By Lemma 5.4, for any prime q 6= p the q-Sylow subgroup G∆,q of G∆ fixes each point of
∆. Since G∆ is the product of its Sylow subgroups, it follows that ∆ = αG∆ = αG∆,p ⊆
αGp = Σ.

Now consider any minimal G-block ∆′ between Σ and ∆. By Lemma 5.6, ∆′ is a minimal
Gp-block between ∆ and Σ. Therefore, using Corollary 5.8, we have [∆′ : ∆] = p and G∆,p

is a normal subgroup of G∆′,p such that their quotient group G∆′,p/G∆,p is a cyclic group
of order p. For all primes q different from p by Lemma 5.4 we have G∆′,q = G∆,q. Since
G∆′ and G∆ are a product of their Sylow subgroups we have G∆ is a normal subgroup of
G∆′ with the quotient G∆′/G∆ = G∆′,p/G∆,p, a cyclic group of order p.

Theorem 5.10. Let G be a transitive permutation group on Ω. Let α be any element
of Ω. Suppose that for all primes p dividing #G we have a chain {α} = ∆0 ⊂ . . . ⊂ ∆m of
G-blocks satisfying the follow properties

(1) The index [∆i+1 : ∆i] = p,
(2) The group G∆i is a normal subgroup of G∆i+1 and

(3) The prime p does not divide the order of G/G∆m .

Then G is nilpotent.

Proof. For each prime factor p of #G we will show that any p-Sylow subgroup of G is
normal. Since G∆m is normal in G (by Lemma[Part 1] 4.4) and by part 3, p does not divide
#G/G∆m , it is sufficient to prove that G∆m is a p-group. We prove inductively that for all
0 ≤ i ≤ m the group G∆i is of cardinality pli for some li. As the base case, G∆0 = {1} and
hence #G∆0 = pl0 where l0 = 0.

Suppose that our hypothesis is true for all i ≤ r. To prove that #G∆r+1 is plr+1 for some
lr+1 it is sufficient to prove that the quotient group G∆r+1/G∆r is a p-group since by the
inductive assumption #G∆r = plr . From Lemma 4.5 the quotient group G∆r+1/G∆r is a

subgroup of
(
G∆r+1

/G (∆r+1/∆r)
)l

for some integer l. We will prove that G∆r+1
/G (∆r+1/∆r)

is a cyclic group of order p which clearly is sufficient.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

The group G (∆r+1/∆r) is the largest subgroup of G∆r that is normal in G∆r+1

(Lemma 4.4). By part 2, G∆r itself is normal in G∆r+1 . Hence the groups G (∆r+1/∆r)
and G∆r

are equal. Furthermore, [G∆r+1
: G∆r

] = [∆r+1 : ∆r] = p (part 1). So, the
quotient group G∆r+1

/G (∆r+1/∆r), which is G∆r+1
/G∆r

, is a cyclic group of order p.

Remark 5.11. Both Theorems 5.9 and 5.10 play an important role in our algorithm
described in the next section. Theorem 5.9 guarantees for nilpotent groups that each chain of
G-blocks (whose sizes are a power of p) can be extended to a maximal chain that terminates
at a p-Sylow block and any pair of adjacent blocks have index p. This allows the algorithm
to grow the chain of blocks in any manner. Theorem 5.10 ensures the correctness.

6. THE POLYNOMIAL-TIME NILPOTENCE TEST

In this section, our goal is to give an algorithm that takes as input a polynomial f(X) over
Q and checks whether its Galois group Gal (f) is nilpotent. Now, Gal (f) is nilpotent if and
only if for each irreducible factor h(X) of f(X), the Galois group Gal (h) is nilpotent. This is
true because nilpotent groups are closed under subgroups, products and quotients. Hence, in
order to test the nilpotence of Galf it suffices to check for each irreducible factor h of f that
its Galois group Gal (h) is nilpotent. Furthermore, using the LLL algorithm [Lenstra et al.
1982], all the irreducible factors of f(X) can be computed in polynomial time. Therefore,
for nilpotence testing, we assume without loss of generality that the input polynomial f(X)
is irreducible.

Let G be Gal (f). We consider G as a subgroup of Sym (Ω), where Ω is the set of roots
of f(X). Since f is irreducible all its roots are distinct, and for any two roots α and β of f
there is an element σ in the Galois group G of f such ασ = β. Therefore, the Galois group
G is a transitive subgroup of Sym (Ω).

We first outline the main idea. For all primes p dividing #G if we can test the existence of
a tower of G-blocks {α} = ∆0 ⊆ . . . ⊂ ∆m satisfying the conditions of Theorem 5.10 then G
is nilpotent. It is not clear whether we can test these conditions by explicitly computing the
G-blocks. That seems possible only if we can already compute the Galois group G. Instead,
our approach will be to test the conditions of Theorem 5.10 by considering the fixed field
of each group G∆i

. For a G-block ∆, let Q∆ denote the fixed field of the splitting field Qf
under the automorphisms in G∆. More precisely,

Q∆ = {β ∈ Qf | βg = β for all g ∈ G∆}.
The following proposition is a consequence of the fundamental theorem of Galois theory

(Theorem 2.1).

Proposition 6.1. Let Q∆ denote the fixed field of Qf under automorphisms in G∆.
Then:

(1) The Galois group Gal (Qf/Q∆) is the group G∆.
(2) Let α be any root of the polynomial f(X) such that α ∈ ∆ then Q∆ is a subfield of

Q(α).
(3) If µ∆(X) is a primitive polynomial for Q∆ then its Galois group Gal (µ∆) is G/G∆.

Proof. Part 1 follows directly from the fundamental theorem of Galois theory as Q∆ of
is the fixed field of Qf under G∆. To prove that Q∆ ⊆ Q(α) notice that the Galois groups
Gal (Qf/Q∆) and Gal (Qf/Q(α)) are G∆ and Gα respectively. As α ∈ ∆ the group Gα is a
subgroup of G∆. Hence by the fundamental theorem of Galois theory Q∆ ⊆ Q(α).

For the third part, notice that if µ∆(X) is the primitive polynomial of Q∆ then its splitting
field Qµ∆ is the normal closure of Q∆ in Qf . Hence, the Galois group Gal (Qf/Qµ∆) is the
largest normal subgroup of G that is contained in G∆. By Lemma 4.4 (putting Σ = Ω in
the lemma) it follows that the Galois group Gal (Qf/Qµ∆

) is precisely G∆. Consequently,
the Galois group Gal (µ∆) = Gal (Qµ∆

/Q) is G/G∆.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

A direct consequence of Proposition 6.1 and Theorem 2.1 is the following.

Proposition 6.2. A tower of G-blocks {α} = ∆0 ⊂ . . . ⊂ ∆m satisfies the conditions
of Theorem 5.10 if and only if the tower of fixed field Q(α) = Q∆0

⊃ . . . ⊃ Q∆m
satisfies

the following conditions:

(1) The degree of the extension Q∆i
/Q∆i+1

is p.
(2) The extension Q∆i

/Q∆i+1
is normal.

(3) For any block ∆ if µ∆ denote a primitive polynomial of the field Q∆, then the prime
p does not divide the order of the Galois group Gal (µ∆m

) of the primitive polynomial
µ∆m

(X) of Q∆m
.

We will first check whether f(X) is solvable by radicals by using the Landau-Miller test.
Clearly, if f(X) is not solvable by radicals then G is not nilpotent. If f(X) is solvable by
radicals then so is each polynomial µ∆i

(X) for 1 ≤ i ≤ m. Hence, applying the Landau-
Miller algorithm [Landau and Miller 1985] we can compute all the prime factors of #Gal (f)
and #Gal (µ∆m) (Theorem 3.3). Thus, if we can compute in polynomial time the primitive
polynomials µ∆i(X) of the fields Q∆i for 1 ≤ i ≤ m then we will have a polynomial-
time algorithm to verify the conditions of Proposition 6.2. The following theorem is due to
Landau and Miller [Landau and Miller 1985] restated in a form suitable for our application.
For completeness, we present a proof in our notation.

Theorem 6.3 (Landau-Miller). Let f(X) ∈ Q[X] be irreducible, G = Gal (f) be its
Galois group and Ω be the set of roots of f over the algebraic closure Q. Let ∆ ⊆ Ω be any
G-block and α ∈ ∆. There is an algorithm that takes as input a polynomial p∆(X) ∈ Q[X]
such that Q∆ = Q(p∆(α)), runs in time polynomial in size (f) and size (p∆), and for each
G-block Σ such that ∆ is a maximal block of Σ, computes a polynomial pΣ(X) ∈ Q[X] such
that QΣ = Q(pΣ(α)). Furthermore, the size of the computed polynomial size (pΣ) is bounded
by a polynomial in size (f) and is independent of size (p∆).

Remark 6.4. A couple of remarks are in order before we proceed to the proof. Notice
that the algorithm for computing pΣ takes as input polynomials f as well as p∆. However,
the theorem stipulates that the size of the output polynomial pΣ is polynomially bounded in
just the size (f) and not on the other polynomial size (p∆). This property of the algorithm
is crucial because we will recursively apply this algorithm to a tower of blocks, where the
tower length can be logarithmic in deg(f). So, if size (pΣ) had been a polynomial in size (p∆)
the overall algorithm would have incurred a polynomial size growth at every level of the
tower making it superpolynomial.

Another point about the algorithm is that the field Q(α) is identified with the quotient
Q[X]/f(X). Thus, elements of Q(α) are polynomials in α with rational coefficients. The
algorithm will work with such polynomials representing elements of Q(α).

Proof. Consider the Galois group G as a permutation group over the roots Ω. For
∆ ⊆ Ω let T∆(X) denote the polynomial

T∆(X) =
∏
η∈∆

(X − η).

Claim 6.5. For the G-block containing α if the polynomial T∆(X) defined above is
δ0 + . . .+ δrX

r. Then field Q∆ is the field Q(δ0, . . . , δr). Here δi ∈ Q(α) are polynomials in
α with coefficients in Q.

Proof of claim. Let K be the field Q(δ0, . . . , δr) and let H be the Galois group
Gal (Qf/K). For the claim it is sufficient to prove that H = G∆. Consider any auto-
morphism σ ∈ G∆. Since σ permutes the roots of ∆ among themselves σ(T∆(X)) = T∆.
So, σ has to fix each of the coefficients δi of T∆ and hence fixes K. Conversely, consider any

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

automorphism τ of H and let ∆′ be the block ∆τ . Since τ fixes K we have τ(T∆(X)) = T∆′ .
As ∆ and ∆′ are G-blocks, this can only happen if ∆′ = ∆ for otherwise T∆(X) and T∆′(X)
have no common roots. Therefore, τ ∈ G∆.

Given the coefficients of the polynomial T∆, notice that we can compute p∆ in polynomial
time by applying the primitive element theorem (see Lemma 2.4). To see this, observe that
Q∆ is a subfield of Qα. Hence [Q∆ : Q] ≤ deg(f). Therefore, the algorithm given by the
primitive element theorem for computing the coefficients of p∆ is polynomial-time bounded.
Further, since T∆(X) is a factor of the polynomial f(X), by a well-known result of Mignotte
[Mignotte 1974], each of the δi’s have size bounded by a polynomial in size (f).

Claim 6.6. Let ∆ be a G-block containing α. The irreducible factor of f over Q∆ which
has α as root is T∆. Let Σ be any G-block such that Σ ⊇ ∆. If g is an irreducible factor of
f over Q∆ then Σ contains a root of g if and only if it contains all the roots of g.

Proof of claim. Let g be an irreducible factor of f(X) over Q∆. The roots of g form
a G∆-orbit of Ω. Conversely, for any G∆-orbit Ω′ the polynomial TΩ′(X) is an irreducible
factor of f(X) over Q∆. Hence the irreducible factor of f over Q∆ that has α as root is T∆.

For a G-block Σ containing ∆ we have GΣ ≥ G∆. Hence, any orbit of G∆ is completely
contained inside an orbit of GΣ. As the roots of any irreducible factor g(X) of f(X) over
Q∆ form an orbit of G∆, it is completely contained inside a GΣ orbit. Hence, if one of the
roots of g is in Σ, the orbit αGΣ of GΣ, then all roots are in Σ. This proves the claim.

Let ∆ be a G-block containing α and assume that we have already computed the poly-
nomial p∆. Further, assume that f factors as g0 . . . gr over Q∆ = Q(p∆(α)) (which can be
computed in polynomial time by Landau’s factorisation algorithm [Landau 1985]). One of
these factors say g0 is T∆. Consider any G-block Σ such that ∆ is a maximal G-subblock
of Σ. There is a factor gi such that Σ contains a root, and hence all the roots (Claim 6.6)
of gi. Let Σi be the smallest G-block containing ∆ and all the roots of gi. We give a
polynomial-time algorithm to compute TΣi . Theorem 6.3 then follows from this algorithm.

Claim 6.7. Let ∆ be a G-block containing α. Given a polynomial p∆ such that Q∆ =
Q(p∆(α)) as a subfield of Q(α) and an irreducible factor g of f over Q∆ we can compute in
polynomial time TΣ as a polynomial in Q(α)[Y], where Σ is the smallest G-block containing
∆ and the roots of g.

Proof of Claim. We are given Q∆ as a subfield of Q(α). The coefficients of factors of
f over Q∆ are polynomials in α. Let the factorisation of f over Q∆ be f = g0 . . . gr, where
g0 = T∆ and g = g1. Denote the set of roots of gi by Φi, for each i. Then Φi’s are the orbits
of G∆ and by Claim 6.6, the polynomial TΣ is precisely the product of gi such that Φi ⊆ Σ.

Let β denote a root of g(X), and σ ∈ Gal (Qf/Q) be an automorphism such that σ maps
α to β. Notice that σ is an isomorphism between the fields Q(α) and Q(β). Let Σ be the
smallest G-block containing ∆ and Φ1. From Theorem 4.3 and the Galois correspondence
of blocks (Theorem 4.3) we know that GΣ is generated by G∆ ∪ {σ}.

If generators for G∆ and the automorphism σ are known, then the block Σ can be
computed by transitive closure of procedure as in Algorithm 1. The correctness of this
algorithm follows directly from Claim 6.6.

Our goal is to get a polynomial-time algorithm for computing TΣ from the above procedure
that defines Σ. First, we compute the extension field Q(α, β) = Q(γ): we do this by first
factoring f over Q(α). Let h be an irreducible factor of g over Q(α). Then Q(α, β) =
Q(α)[X]/h(X). As [Q(α, β) : Q] ≤ n2, we can compute a primitive element γ in polynomial
time.3 Furthermore, in polynomial time we can find polynomials r1 and r2 such that α =
r1(γ) and β = r2(γ).

3Note that we need to invoke Remark 2.5 for this computation.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Let S := {∆,Φ1}
while new orbits get added to S do

Compute S′ := {Φσ | Φ ∈ S}
if Φj ∩ Φσ 6= ∅ for some Φσ ∈ S′ then include Φj in S;

end
Output

⋃
{Φ | Φ ∈ S}

Algorithm 1: Computing Σ

For all 1 ≤ i ≤ r, let σ map the polynomials gi in Q(α)[X] to the polynomials gσi in
Q(β)[X], obtained by symbolically replacing α by β in each coefficient of gi. In Algorithm 1,
testing if Φj ∩ Φσi 6= ∅ amounts to finding if gcd(gj , g

σ
i) is nontrivial. To make this gcd

computation possible, we must express gj and gi over Q(γ), which we do by replacing α by
r1(γ) and β by r2(γ). We can now give the algorithm for computing TΣ.

Let S := {T∆, g}
while new factors get included in S do

Compute S′ := {hσ | h ∈ S}
for each factor gj and hσ ∈ S′ do

Express gj(X) and hσ(X) as polynomials over the field Q(γ).
if gcd(gj , h

σ) is nontrivial then include gj in S;
end

end
Output TΣ := T∆ ·

∏
gi∈S gi

Algorithm 2: Computing TΣ

It is clear that Algorithm 2 is polynomial-time bounded. The preceding discussion and
the procedure for defining Σ imply that the algorithm correctly computes TΣ. This proves
Claim 6.7.

The Algorithm

The complete nilpotence test is given in Algorithm 3. We show that the algorithm is correct
and that its running time is polynomially bounded in its input size in the rest of the section.

Proposition 6.8. Algorithm 3 runs in time polynomial in size (f).

Proof. The Landau-Miller solvability test for Gal (Qf/Q) and the algorithm of Theo-
rem 3.3 are polynomial time bounded [Landau and Miller 1985]. The nilpotence test first
verifies that Gal (Qf/Q) is solvable by applying the Landau-Miller test. Now, since the field
Q∆m

is contained in Qf , its primitive polynomial µ∆m
(X) will also split in Qf implying

that Qµ∆m
⊂ Qf . Hence Gal

(
Qµ∆m

/Q
)

= Gal (µ∆m
) is also a solvable group. Hence, in

steps 1 and 7 we can apply the algorithm of Theorem 3.3 to compute all the prime factors
of #Gal (f) and #Gal (µ∆m

) in polynomial time.
Step 5 can be carried out in polynomial time by Theorem 6.3, and Step 6 can be carried

out in polynomial time (applying the algorithmic version of the primitive element theorem
as explained in Remark 2.5).

Clearly all other steps within the loop starting at line 4 can be carried out in polynomial
time. Hence the overall algorithm is polynomial-time bounded.

We now prove the correctness of the algorithm in the next two propositions.

Proposition 6.9. If f(X) is an input irreducible polynomial of degree n such that
Gal (f) is nilpotent then Algorithm 3 accepts f .

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

Input: A polynomial f(X) ∈ Q[X] of degree n
Output: Accept if Gal (f) is nilpotent;Reject otherwise
Verify that f(X) is solvable using the Landau-Miller test.;

1 Compute the set P of all the prime factors of #Gal (f);
Let G ≤ Sym (Ω) denote the Galois group of f , where Ω is the set of roots of f .

2 for every p ∈ P do
3 if p does not divide n then Reject ;

Let pm be the highest power of p dividing n.
Q∆0 := Q(X)/f(X)

4 for i = 0 to m− 1 do
5 By Theorem 6.3 compute QΓ for all minimal G-blocks Γ containing ∆i.
6 Among the fields QΓ computed above check if there a field K such that

Q∆i
/K is a normal extension of degree [Q∆i

: K] = p.
if no such field exists then Reject ;
else Q∆i+1

:= K ;
end
Let µ∆m

(X) be the primitive polynomial for Q∆m

7 if p divides #Gal (µ∆m
) then Reject ;

end
Accept

Algorithm 3: Nilpotence test

Proof. Let G be the Galois group Gal (f) and let Ω be the set of roots of f . Since f
is of degree n, #Ω = n and by Lemma 5.3 every prime factor of #G divides n. Therefore,
algorithm never rejects f at step 3. Now, for the loop starting in line 4 we show that if G
is nilpotent the algorithm always succeeds in finding a field K, from among the candidate
fields QΓ, in step 6. Notice that at the ith iteration the block ∆i is of cardinality pi and
i < m. Hence, by Theorem 5.9, ∆i is contained in some p-Sylow block say Σ and there is a
minimal G-block ∆ containing ∆i that has the following three properties:

(1) The index [∆ : ∆i] is p.
(2) The group G∆i

is a normal subgroup of G∆.
(3) The quotient G∆/G∆i

is cyclic of order p.

Consider the field Q∆. Since ∆ is a minimal block that properly contains ∆i, the field
Q∆ is among the fields computed in Step 5. We claim that Q∆ is a suitable choice for K
in step 6. The groups G∆i and G∆ are the Galois groups Gal (Qf/Q∆i) and Gal (Qf/Q∆),
respectively. Hence, by Theorem 2.1, we have Q∆i/Q∆ is a normal extension of degree
[Q∆i : Q∆] = [G∆ : G∆i] = p. As the algorithm goes over all minimal G-blocks Γ containing
∆i, it will always succeed in finding a field K in step 6.

Finally, at the end of the loop, the index i becomes m and ∆m is of order pm. Since pm is
the highest power of p dividing #Ω, by Theorem 5.9 the block ∆m is a p-Sylow block. By
Proposition 6.1 G/G∆m = Gal (µ∆m

). Further, by Lemma 5.5 the group G∆m is the unique
p-Sylow subgroup of the nilpotent group G, which implies that p does not divide #G/G∆m .
Hence the input passes the test in step 7.

Proposition 6.10. If Algorithm 3 accepts the input polynomial f(X) then Gal (f) is
nilpotent.

Proof. Let G be the Galois group of f . We claim that if the algorithm accepts the input
then for every prime p dividing #G we have a maximal chain of {α} = ∆0 ⊂ . . . ⊂ ∆m

with the following properties

(1) The index of the block [∆i+1 : ∆i] = p,

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

(2) The group G∆i is a normal subgroup of G∆i+1 and

(3) The prime p does not divide G/G∆m .

This is because in step 6 we have verified that Q∆i
is a normal extension of Q∆i+1

of degree
p. Hence by the fundamental theorem of Galois theory their Galois groups G∆i

and G∆i+1

are such that G∆i
is a normal subgroup of G∆i+1

and [G∆i+1
: G∆i

] = [∆i+1 : ∆i] = p.
Furthermore, in step 7 we have verified that p does not divide the order of Gal (µ∆m

) =
G/G∆m . Therefore, G satisfies all the properties of Theorem 5.10 and hence is nilpotent.

Propositions 6.8, 6.9 and 6.10 together show the following.

Theorem 6.11. There is a deterministic polynomial-time algorithm that takes as input
f(X) over Q and decides whether the Galois group of f is nilpotent.

7. COMPUTING SYLOW POLYNOMIALS

In the last two sections we saw that Sylow subgroups play a crucial role in the nilpotence
testing algorithm. In this section we explore whether any further information regarding
Sylow subgroups of nilpotent Galois groups can be computed. In this context we make the
following definition.

Definition 7.1 (Sylow polynomials). Let f(X) be any polynomial over Q with nilpotent
Galois group G. Let p be a prime that divides the order of G. By a p-Sylow polynomial we
mean a polynomial g(X) over Q such that g(X) splits in the splitting field Qf of f and the
Gal (g) is (isomorphic to) the p-Sylow subgroup Gp of G.

In this section we describe a polynomial-time algorithm that, given as input a polynomial
f(X) ∈ Q[X] with nilpotent Galois group G, computes a p-Sylow polynomial for each prime
factor p of #G. An immediate consequence is that for polynomials f(X) with nilpotent
Galois group there are Sylow polynomials of polynomially bounded degree.

In the following lemma we show that for this problem it suffices to consider irreducible
polynomials f(X).

Lemma 7.2. Let f(X) ∈ Q[X] be a polynomial with nilpotent Galois group and let
f1, f2, . . . , fk be all distinct irreducible factors of f(X). For each i, let gi be a p-Sylow
polynomial for fi. Then the product polynomial g1g2 · · · gk is a p-Sylow polynomial for f(X).

Proof. Let g(X) = g1(X)g2(X) · · · gk(X). Since gi is a p-Sylow polynomial of fi, by
definition we gi splits in the field Qfi , and its Galois group Gal (gi) is isomorphic to the

unique p-Sylow subgroup G
(i)
p of G(i) = Gal (fi). Hence the Galois group Gal (Qfi/Qgi) is

isomorphic to the quotient group G(i)/G
(i)
p . Therefore, p does not divide the order of the

Galois group Gal (Qfi/Qgi).
For each i we have Qgi ⊆ Qfi ⊆ Qf . Let Q denote the algebraic closure of Q. Observe

that Qf is the smallest subfield of Q containing Qfi for each fi. Likewise, Qg is the smallest

subfield of Q containing each Qgi . It follows that Qg is a subfield of Qf .
Furthermore, we can observe that every σ ∈ Gal (Qg/Q) must map gi to gi for each i.

Hence, for each i, σ restricted to Qgi is in Gal (Qgi/Q). Clearly, σ is nontrivial if and only if
it is nontrivial on some Qgi . Therefore, since each Gal (Qgi/Q) is a p-group it follows that
Gal (Qg/Q) is also a p-group.

Similarly, consider an element π ∈ Gal (Qf/Qg). We can see that for each i, π restricted
to Qfi is in Gal (Qfi/Qgi) and π is nontrivial only if it is nontrivial on some Qfi .

As a result the Galois group Gal (Qf/Qg) is isomorphic to a subgroup of the product
group

∏
i Gal (Qfi/Qgi). Hence, p is not a factor of #Gal (Qf/Qg) as it is not a factor of

#Gal (Qfi/Qgi) for 1 ≤ i ≤ k. It follows that Gal (Qg/Q) is isomorphic to the p-Sylow
subgroup of Gal (Qf/Q). Hence g is a p-Sylow polynomial for f .

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

We now consider the problem of computing a p-Sylow polynomial for an irreducible
polynomial f(X) with nilpotent Galois group. To this end we generalise the notion of
Sylow blocks (Definition 5.1).

Definition 7.3 (Generalised Sylow block). Let G be a transitive nilpotent permutation
group on Ω and let {p1, p2, . . . , pk} be the set of all prime factors of #G. For ∅ ⊂ P ⊆
{p1, p2, . . . , pk}, a subset Σ ⊆ Ω is called a P -Sylow block if it is an orbit of GP =

∏
p∈P Gp.

Since GP is a normal subgroup of G, each orbit of GP is a block of G.
The next three results state some properties of P -Sylow blocks of transitive nilpotent

groups that we require for the algorithm. These are generalisations of Lemma 5.3, Lemma 5.5
and Theorem 5.9 respectively. We give brief proofs for these since they are on the same lines
as their counterparts in Section ??. As a matter of fact, all results in Section 5 for Sylow
blocks have straightforward generalisations to P -Sylow blocks.

Lemma 7.4. Let G ≤ Sym (Ω) be a transitive nilpotent permutation group and let P
be any set of primes that divide the order of G. Let mp denote the highest power of p that
divides #Ω. Then any P -Sylow block Σ has cardinality

∏
p∈P p

mp .

Proof. By Theorem 4.3 [Ω : Σ] = [G : GΣ]. Recall that GΣ = {g ∈ G | Σg = Σ}.
Since Σ is a GP orbit it follows that GP is a subgroup of GΣ. Hence for every prime p ∈ P ,
p does not divide #G/#GΣ, and hence p does not divide #Ω/#Σ for each p ∈ P . By the
nilpotence of G, each p ∈ P divides #Ω. Therefore, pmp divides #Ω for each p ∈ P .

On the other hand, since Σ is a GP -orbit, GP is transitive on Σ. Hence, by the Orbit-
Stabilizer formula (Theorem 4.1) #Σ divides #GP which means #Σ has no prime factors
other than from P . Putting it together, it follows that Σ has cardinality

∏
p∈P p

mp .

Lemma 7.5. Let G ≤ Sym (Ω) be a transitive permutation group and let P be any set of
primes that divide the order of G. Let Σ be any P -Sylow block of G then GΣ is the product∏
p∈P Gp.

Proof. As observed in the previous lemma, GP is a subgroup of GΣ. Since Σ is a block
for G, consider the block system generated by G-action on Σ and let Σ′ be any other block
in this system. For some g ∈ G we have

GΣ′ = gGΣg
−1.

Since GP is a normal subgroup of G, gGP g
−1 = Gp, and hence GP is a subgroup of GΣ′

for each Σ′ in the block system which implies GP is a subgroup of GΣ.
Suppose that GP 6= GΣ. Then some prime p 6∈ P divides #GΣ. Let GΣ

p be the p-Sylow

subgroup of GΣ (which is unique and hence a normal subgroup since GΣ is also nilpotent).
Suppose GΣ

p has nontrivial action on some block Σ′ in the block system. If O ⊂ Σ′ is a

nontrivial GΣ
p -orbit then it is a GΣ-block contained in Σ′. Further, GΣ is transitive on Σ′

since GP ≤ GΣ. Hence |O| divides |Σ′| which is impossible since |O| is a power of p and |Σ′|
does not have p as factor. This is a contradiction. Hence GP = GΣ.

Theorem 7.6. Let G be any transitive permutation group on Ω and let P be a set of
primes that divide the order of G. Let Γ be any G-block such that each prime that divides
#Γ is in P . Then there is a P -Sylow block Σ of G such that Γ ⊂ Σ. Furthermore, for a
prime p ∈ P if p divides #Ω

#Γ then we have a G-block Γ′ such that Γ ⊂ Γ′ ⊆ Σ such that

(1) The index [Γ′ : Γ] is p.
(2) The group GΓ is a normal subgroup of GΓ′ .
(3) The quotient group GΓ′/GΓ is a cyclic group of order p.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

Proof. Let Γ be any G-block and α ∈ Γ. Let Σ = αGP which, by definition, is a P -Sylow
block. We claim that Γ ⊆ Σ. Let {p1, p2, . . . , pk} be the set of all distinct prime factors of
#G and let P denote the complement of P in this set.

Now consider the group GΓ, which is transitive on Γ by Proposition 4.2. Since GΓ, being
nilpotent, is the direct product of its Sylow subgroups, we can write

GΓ = GΓ,P ×GΓ,P ,

where GΓ,P is the product of the p-Sylow subgroups of GΓ for p ∈ P and GΓ,P is similarly

defined for P . Now, every element of GΓ,P must pointwise fix Γ because GΓ,P is a normal
subgroup of GΓ and a nontrivial orbit of GΓ,P will have size whose prime factors are all

from P on the one hand, and on the other hand the orbit size must divide #Γ. It follows
that GΓ,P is transitive on Γ and hence αGΓ,P = Γ. Since GΓ,P is contained in GP it follows
that Γ ⊆ Σ.

Suppose p ∈ P divides #Ω/#Γ. To prove the three parts of the theorem, we will consider
the action of the group G on the block system B (Ω/Γ). Since G is nilpotent and transitive
on B (Ω/Γ) and p divides #Ω/#Γ we can apply Theorem 5.9. The block ∆ in Theorem 5.9
is set to be the singleton set {Γ}. By Theorem 5.9 there is a p-Sylow block Σ′ = {Γ1 =
Γ,Γ2, . . . ,Γt} containing Γ and a minimal G-block ∆′ ⊂ Σ′ of size p. Without loss of
generality, let

∆′ = {Γ1 = Γ,Γ2, . . . ,Γp}.
Let Γ′ =

⋃p
i=1 Γi. It is easy to verify that all the three conditions in the statement follow

from the corresponding conditions for ∆′ and ∆ in Theorem 5.9.

Let {p1, p2, . . . , pk} be the set of all distinct prime factors of #Gal (f). In order to compute
the pi-Sylow polynomial we set Pi = {p1, p2, . . . , pk} \ {pi} and compute a tower of blocks
{α} = ∆0 ⊂ ∆1 ⊂ . . . ⊂ ∆m where ∆m is the Pi-Sylow block containing the point
α. By computing the blocks ∆i we mean, as in Section 6, that we compute a primitive
polynomial µ∆i(X) for the field Q∆i , 1 ≤ i ≤ m. Since the Galois group of µ∆i is G/G∆i

(by Proposition 6.1), and G∆m = GPi it follows that the Galois group of µ∆m is G/G∆m =
G/GPi

which is isomorphic to Gpi , the pi-Sylow subgroup of G. Hence µ∆m
is a pi-Sylow

polynomial for f .
We now give the complete algorithm for computing the p-Sylow polynomial for an irre-

ducible polynomial f(X) with nilpotent Galois group.
Clearly Algorithm 4 runs in time polynomial in size (f). By Theorem 7.6 it follows that

step 4 is always possible. Therefore, it follows from Lemma 7.4 that at the end of the two
loops we have a primitive polynomial µ∆m(X) for Q∆m where ∆m is a Pi-Sylow block of
G. The Galois group Gal (µ∆m) is G/G∆m by Proposition 6.1. Hence the Galois group of
µ∆m(X) is the pi-Sylow subgroup of G as claimed. Algorithm 4 thus computes the pi-Sylow
polynomial for the irreducible polynomial f(X). Together with Lemma 7.2 we have the
following theorem.

Theorem 7.7. There is a deterministic polynomial-time algorithm that given a poly-
nomial f(X) with nilpotent Galois group and any prime p dividing the order of the Galois
group Gal (f), computes a polynomial g(X) such that g(X) splits in Qf and the Galois
group of g(X) is isomorphic to the p-Sylow subgroup of Gal (f).

In fact the same ideas yield a more general observation by modifying the Algorithm 4 to
work with any arbitrary set P of prime factors of #Gal (f).

Theorem 7.8. There is a deterministic polynomial-time algorithm that given a polyno-
mial f(X) with nilpotent Galois group and any subset P of primes dividing the order of
the Galois group Gal (f), computes a polynomial g(X) such that g(X) splits in Qf and the

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

Input: An irreducible polynomial f(X) ∈ Q[X] of degree n with nilpotent Galois
group and a prime factor pi of n.

Output: A pi-Sylow polynomial of f
Let {p1, p2, . . . , pk} be the set of all prime factors of #Gal (f) (these are exactly the
prime factors of n by Lemma 5.3).

Let Q∆0 = Q(X)/f(X) and µ∆0(X) = f(X).
Let G denote the Galois group of f .
r := 0
Q∆0 := Q(X)/f(X)

1

for j ∈ {1, . . . , i− 1, i+ 1, . . . , k} do
Let p

mj

j be the highest power of pj dividing n.

2 for ` = 1 to mj do
3 Using Theorem 6.3 compute QΓ for all minimal G-blocks Γ containing ∆r.
4 Among the fields QΓ computed above find a field Q∆r+1

such that
Q∆r

/Q∆r+1
is a normal extension of degree pj .

r := r + 1
end

end
Let µ∆m

(X) be the primitive polynomial for Q∆m
, where m =

∑
j 6=imj

return µ∆m
(X)

Algorithm 4: Computing a pi-Sylow polynomial

Galois group of g(X) is (isomorphic to) the subgroup GP =
∏
p∈P Gp where Gp denotes the

unique p-Sylow subgroup of Gal (f).

8. CONCLUDING REMARKS

Computing the Galois group of a polynomial f(X) ∈ Q[X] efficiently remains a challenging
open problem. However, it is possible to test certain properties like commutativity and solv-
ability efficiently. We have added nilpotence testing to this list. In this context, an intriguing
problem is whether we can efficiently test if the Galois group of f(X) is supersolvable (refer
Hall’s text [Hall Jr. 1959, Chapter 10] for a definition). Supersolvable groups are a proper
subclass of solvable groups and contain nilpotent groups. It is not clear if we can adapt
either the Landau-Miller solvability test [Landau and Miller 1985] or our nilpotence test to
an efficient supersovablility test. It would be interesting to even give a conditionally efficient
algorithm, e.g. assuming the generalised Riemann hypothesis.

Finally, we note that our nilpotent test can be generalised to obtain a polynomial-time
algorithm to test if the Galois group of a polynomial f(X) ∈ K[X] is nilpotent, where K
is a number field presented by giving a primitive polynomial µ(X) of K over Q, and the
running time is polynomially bounded in size (f) and size (µ). This generalised nilpotence
test requires some standard polynomial-time algorithms like factoring of univariate
polynomials and gcd computations over K which are already known [Landau 1985].

Acknowledgments. We are indebted to the referees for their meticulous refereeing with
many important suggestions and corrections.

REFERENCES

Ákos Seress. 2003. Permutation group algorithms. Number 152 in Cambridge Tracts in Mathematics.
Cambridge University Press.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

Arvind, V. and Kurur, P. P. 2006. A polynomial time nilpotence test for galois groups and related results.
In 31st International Symposium on Mathematical Foundations of Computer Science. Lecture Notes
in Computer Science 4162, Springer Verlag, 134–145.

Cohen, H. 1993. A course in Computational Number Theory. Springer-Verlag, Berlin, Heidelberg, New
York.

Fernandez-Ferreiros, P. and Gomez-Molleda, M. A. 2003. Deciding the nilpotency of the Galois group
by computing elements in the centre. Mathematics of Computation 73, 248.

Galois, É. 1830a. Analyse d’un mémoire sur la résolution algébrique des équations. Bulletin des Sciences
mathématiques XIII, 271.

Galois, É. 1830b. Note sur la résolution des équations numériques. Bulletin des Sciences
mathématiques XIII, 413.

Geissler, K. and Klüners, J. 2000. Galois group computation for rational polynomials. Journal of Sym-
bolic Computation 30, 653–674.

Hall Jr., M. 1959. The Theory of Groups first Ed. The Macmillan Company, New York.

Jerrum, M. 1986. A compact representation for permutation groups. Journal of Algorithms 7, 1, 60–78.

Kurur, P. P. 2006. Complexity upper bounds using permutation group theory. Ph.D. thesis, Institute of
Mathematical Sciences, Chennai, India.

Landau, S. 1984. Polynomial time algorithms for Galois groups. In EUROSAM 84 Proceedings of Interna-
tional Symposium on Symbolic and Algebraic Computation, J. Fitch, Ed. Lecture Notes in Computer
Sciences Series, vol. 174. Springer, 225–236.

Landau, S. 1985. Factoring polynomials over algebraic number fields. SIAM Journal of Computing 14,
184–195.

Landau, S. and Miller, G. L. 1985. Solvability by radicals is in polynomial time. Journal of Computer
and System Sciences 30, 179–208.

Lang, S. 1999. Algebra third Ed. Addison-Wesley Publishing Company, Inc.

Lenstra, A. K., Lenstra Jr. H. W., and Lovász, L. 1982. Factoring polynomials with rational coefficients.
Mathematische Annalen 261, 515–534.

Lenstra Jr., H. W. 1992. Algorithms in algebraic number theory. Bulletin of the American Mathematical
Society 26, 2, 211–244.

Luks, E. M. 1982. Isomorphism of graphs of bounded valence can be tested in polynomial time. Journal of
Computer and System Sciences 25, 1, 42–65.

Luks, E. M. 1993. Permutation groups and polynomial time computations. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science 11, 139–175.

Mattman, T. and McKay, J. 1985. Computation of Galois groups over function fields. Mathematics of
Computation 66, 823–831.

Matzat, B., McKay, J., and Yokoyama., K. 2000. Special issue on algorithmic methods in galois theory.
Journal of Symbolic Computation 30.

Mignotte, M. 1974. An inequality about factors of polynomials. Mathematics of Computation 28, 128,
1153–1157.

Shoup, V. 1999. Efficient computation of minimal polynomials in algebraic extension of finite fields. In
International Symposium on Symbolic and Algebraic Computation. 53–58.

Soicher, L. and McKay, J. 1985. Computing Galois groups over rationals. Journal of Number Theory 20,
273–281.

Stauduhar, R. P. 1973. The determination of Galois groups. Mathematics of Computation 27, 981–996.

Tschebotaröw, N. and Schwerdtfeger, N. 1950. Grundzüge der galoischen theorie. In Groningen,
Djakarta. Noordhoff.

van der Waerden, B. L. 1991. Algebra Seventh Ed. Vol. I. Springer-Verlag.

Wielandt, H. 1964. Finite Permutation Groups. Academic Press, New York.

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.

