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Abstract

We show that Graph Isomorphism is in the complexity class SPP, and hence it is
in ⊕P (in fact, in ModkP for each k ≥ 2). These inclusions for Graph Isomorphism
were not known prior to membership in SPP. We derive this result as a corollary of a

more general result: we show that a generic problem FIND-GROUP has an FPSPP

algorithm. This general result has other consequences: for example, it follows that
the hidden subgroup problem for permutation groups, studied in the context of quan-

tum algorithms, has an FPSPP algorithm. Also, some other algorithmic problems
over permutation groups known to be at least as hard as Graph Isomorphism (e.g.
coset intersection) are in SPP, and thus in ModkP for each k ≥ 2.
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1 Introduction

The Graph Isomorphism problem —of testing if two graphs are isomorphic—
is a well-studied algorithmic problem in the class NP. Formally, the decision
problem GI (for Graph Isomorphism) is defined as:

GI = {〈X1, X2〉 | X1 and X2 are isomorphic graphs}.
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It is an outstanding open problem in computational complexity whether Graph
Isomorphism has a polynomial-time algorithm. This problem has stimulated
a great deal of research in algorithms and complexity over the years. There
is strong evidence that Graph Isomorphism is not NP-complete. In [2] (also
see [5]) it was shown that Graph Nonisomorphism is in AM implying that
GI is in NP ∩ coAM. It follows that GI cannot be NP-complete unless the
polynomial hierarchy collapses to Σp

2 [10,29]. Schöning, who introduced the
notion of lowness in complexity theory, pointed out in [29] that GI is low for
Σp

2. I.e. GI is powerless as oracle for Σp
2.

Subsequently, it was shown in [22] that GI is also low for the counting com-
plexity class PP (PP is the language class corresponding to #P). This result
is proven using the machinery of GapP functions introduced in the seminal
paper by Fenner, Fortnow, and Kurtz [13] on gap-definable counting classes.
The study of counting complexity classes is an area of research in structural
complexity theory motivated by Valiant’s class #P (see e.g. [13]). Intuitively,
counting complexity classes are defined by suitable restrictions on the num-
ber of accepting and rejecting paths in nondeterministic Turing machines. In
[13] the languages classes SPP and LWPP are introduced as generalizations of
Valiant’s class UP. It is shown in [13] that UP ⊆ SPP ⊆ LWPP, and LWPP
is low for PP.

After Shor’s breakthrough quantum polynomial-time algorithms for integer
factoring and discrete log [31] a natural question is whether Graph Isomor-
phism is in BQP (the class of problems solvable in quantum polynomial time).
The hidden subgroup problem was formulated to generalize Shor’s algorithmic
technique. In particular, Graph Isomorphism can be seen as an instance of the
hidden subgroup problem.

How does the class BQP relate to standard complexity classes defined using
classical Turing machines? Fortnow and Rogers [15] show that BQP is con-
tained in the counting complexity class AWPP (definitions follow). Thus, in
a sense, we can also think of BQP as a counting class.

1.1 Summary of new results

In this paper, we show that Graph Isomorphism is in the class SPP. This was
left as an open question in [22] (also see [13]). As a consequence it follows that
GI is in and low for ModkP for each k ≥ 2. Previously, only a special case of
Graph Isomorphism, namely Tournament Isomorphism, was known to be in
⊕P. 2

2 Tournament Isomorphism in ⊕P follows because any tournament has an odd
number of automorphisms. There are special cases of Graph Isomorphism, e.g.
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What we prove is a more general result: we show that a generic problem

FIND-GROUP is in FPSPP as a consequence of which GI and several other
algorithmic problems on permutation groups that are not known to have
polynomial-time algorithms turn out to be in SPP. In particular, as another
corollary, we show that the hidden subgroup problem (HSP) over permutation

groups is in FPSPP. The hidden subgroup problem is of interest in the area
of quantum algorithms.

Outline of the FPSPP algorithm

To indicate how the proof of our main theorem will proceed, we give a broad

outline of the FPSPP algorithm for the specific problem of computing a gener-
ator set for the automorphism group G = Aut(X) of a graph X on n vertices
(this problem is polynomial-time equivalent to GI). Since G is a subgroup of
Sn, it has the following tower of subgroups

1 = G(n−1) ≤ G(n−2) ≤ . . . ≤ G(1) ≤ G(0) = G,

where G(i) is the subgroup of G that fixes the points 1, 2, . . . , i.

Our algorithm will compute a generator set for G by computing the coset
representatives of G(i) in G(i−1) for each i. Starting with G(n−1), the algorithm
will compute what is known as a strong generator set for G(i) in decreasing
order of i until finally it computes a strong generator set for G(0) = G.

If G were given by its generator set as input, then it is well-known that a
strong generator set for G can be computed in polynomial time. These ideas
were developed in [32,16] to design a polynomial-time membership test for
permutation groups. These ideas play an important role in the design of our
algorithm. For our problem notice that we do not have access to a generator
set for G = Aut(X). Indeed, a generator set for Aut(X) is what the algorithm
has to compute. Our algorithm will use an NP oracle to access elements of
G from different subgroups in the above tower. An important aspect that

yields the FPSPP bound is that the queries made by the algorithm to the NP
oracle are carefully chosen. A key procedure we use here is a polynomial-time
algorithm for finding the lexicographically least element in a coset Hg of a
permutation group H ≤ Sn and g ∈ Sn.

The plan of the paper is as follows: in the next section we explain notation
and give preliminary definitions and results, particularly concerning SPP and

Graph Isomorphism for bounded-degree graphs or bounded genus graphs, that have
polynomial-time algorithms.
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related counting complexity classes. In Sections 3 and 4 we develop the ingredi-

ents leading to the proof of our main result that there is an FPSPP algorithm
for the FIND-GROUP problem, and derive as corollary that GI is in SPP. In
Sections 5 and 6 we give further applications of the main result. Finally, we
state some open problems.

2 Preliminaries

Following standard notation, we use Σ to denote the alphabet {0, 1} and Σ∗

denotes the set of all finite strings over Σ. The length of a string x ∈ Σ∗ is
denoted by |x|. Let Z denote the set of integers.

As usual, the class of languages computable in polynomial time is denoted
by P, and the class of polynomial-time computable functions is denoted by
FP. The class of languages computable in nondeterministic polynomial time
is denoted by NP. Other basic notions from complexity theory that we require
in this paper can be found in standard textbooks such as Balcázar et al’s
texts [7,8]. We now focus on definitions of counting complexity classes, with
particular emphasis on gap-definable classes, and give a brief description of
some of their properties relevant to the present article. Details can be found
in [13–15,12].

2.1 SPP and other Counting Complexity Classes

Fenner, Fortnow and Kurtz defined gap-definable functions [13] using which
they examined several counting complexity classes like PP, C=P, ModkP, and
SPP.

Definition 1 A function f : Σ∗ → Z is said to be gap-definable if there is
a nondeterministic polynomial time Turing machine M such that, for each
x ∈ Σ∗, f(x) is the difference between the number of accepting paths and the
number of rejecting paths of M on input x. More precisely, if accM(x) denotes
the number of accepting paths and rejM(x) the number of rejecting paths of M
on input x, then

f(x) = accM(x)− rejM(x).

Let GapP denote the class of gap-definable functions [13]. For each nonde-
terministic polynomial time Turing machine M let gapM denote the GapP
function defined by it.
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Recall that a language L is in UP if there is a nondeterministic polynomial-
time Turing machine M accepting L such that M has at most one accepting
path on any input. The class UP was defined by Valiant in [33] and it captures
the complexity of 1-way functions.

The complexity class SPP introduced in [13] is the GapP analogue of UP. The
class LWPP, also introduced in [13], contains SPP. We recall their definitions.

Definition 2

(1) A language L is in SPP if there is a nondeterministic polynomial-time
Turing machine M such that

x ∈ L implies gapM(x) = 1,

x 6∈ L implies gapM(x) = 0.

(2) A language L is in LWPP if there are a nondeterministic polynomial-time
Turing machine M and an FP function g such that

x ∈ L implies gapM(x) = g(1|x|),

x 6∈ L implies gapM(x) = 0.

In either case we say that L is accepted by the machine M .

We note that UP ⊆ SPP ⊆ LWPP. The standard counting complexity classes
PP and ModkP can also be defined using gap-definable functions.

Definition 3 [13]

(1) A language L is in PP if there is a nondeterministic polynomial-time
Turing machine M such that

x ∈ L ⇐⇒ gapM(x) > 0.

(2) A language L is in ModkP (for k ≥ 2) if there is a nondeterministic
polynomial-time Turing machine M such that

x ∈ L ⇐⇒ gapM(x) 6= 0 (mod k).

Indeed, the above definitions are examples of a general notion of gap-definable
complexity classes introduced and studied in [13]. It is shown in [13] that SPP
is the minimal gap-definable class in a certain sense.

By relativizing the nondeterministic polynomial-time Turing machines we can
define the relativized class GapPA, for oracle A ∈ Σ∗. Thus, we can define the
relativized complexity classes SPPA, PPA, and ModkP

A.
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The notion of lowness was first introduced in complexity theory by Schöning
in [28]. We recall the definition.

Definition 4 Let C be a relativizable complexity class. We say that a language
A ∈ Σ∗ is low for C if CA = C.

In particular we are interested in languages that are low for the class PP. We
summarize as a theorem some properties of SPP from [13] related to lowness.

Theorem 5 [13]

(1) Every language in SPP (indeed, even in the larger class LWPP) is low

for PP. More precisely, PPLWPP = PP.

(2) SPP ⊆ ModkP for all k ≥ 2. Moreover, SPPSPP = SPP.

We note here that Graph Isomorphism was shown to be low for PP in [22] by
proving that it is in LWPP. It is also shown in [22] that GA (testing if a given
graph has a nontrivial graph automorphism) is in SPP. It is known that GA
is polynomial-time reducible to GI, but the converse is open.

Recall that BPP denotes the class of languages with polynomial-time random-
ized algorithms with error probability bounded by, say, 1/3. The class BPP is
also known to be low for PP [21].

The complexity class AWPP was introduced in [14]. More recently, Fenner [12]
has shown a sort of gap amplification property for AWPP which yields the
following neat definition for this class.

Definition 6 A language L is in the class AWPP if there is a nondetermin-
istic polynomial-time Turing machine M and a polynomial p such that for all
x ∈ Σ∗

x ∈ L implies 2/3 ≤ gapM(x)

2p(|x|)
≤ 1,

x 6∈ L implies 0 ≤ gapM(x)

2p(|x|)
≤ 1/3.

The class AWPP generalizes both BPP and SPP, and it is shown in [14] that
every language in AWPP is low for PP.

Let BQP denote the class of languages that have quantum polynomial-time
algorithms with bounded error probability (say 1/3). To complete the picture
relating these classes, Fortnow and Rogers in [15] have shown that BQP is
contained in AWPP and hence BQP is also low for PP.
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It is interesting to note that NP∩ co-NP is not known to be low for PP. Here
is a diagram that shows the containments between the complexity classes
discussed here.

AWPP

LWPP BQP

SPP BPP

UP RP

P

.

Although no containment is known between BQP and SPP, it is interesting to
compare these classes in terms of natural problems they contain. In the present
paper we show that Graph Isomorphism and the hidden subgroup problem
for permutation groups are in SPP. These problems have resisted efficient
deterministic or randomized algorithms, but they are still considered as prob-
lems likely to have polynomial-time quantum algorithms. On the other hand,

FPSPP contains Integer Factoring and Discrete Log that have polynomial-

time quantum algorithms. In fact, these problems are even in FPUP. Also, as

PSPP = SPP, notice that the class FPSPP is essentially SPP: for f ∈ FPSPP

and input x, the bits of f(x) can be computed in SPP. A similar closure prop-
erty holds for BQP.

As mentioned before, SPP is contained in and is low for the complexity classes
ModkP, C=P, and PP. Also, SPP has other nice properties (see [13] for details).
For instance, SPP is characterized exactly as the class of languages low for
GapP. In summary, SPP can be seen as the GapP analogue of UP and is a
robust complexity class.

Let M be a nondeterministic polynomial-time oracle Turing machine. Suppose
A is a language in NP accepted by some NP machine N . We say that MA

makes UP-like queries to the oracle A if on all inputs x, MA(x) makes only
such queries y for which N(y) has at most one accepting path. Effectively, it
is like M having access to a UP oracle. We now state a useful variant of a
result from [22,23].

Theorem 7 ([22]) Let M be a nondeterministic polynomial-time oracle ma-
chine with oracle A ∈ NP such that MA makes UP-like queries to A then the
function h(x) = gapMA(x) is in GapP.
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The following lemma, which is a straightforward consequence of Theorem 7
and of Theorem 5, is in a form useful for this paper.

Lemma 8

• Suppose L is in SPPA accepted by the nondeterministic polynomial-time
oracle machine MA with oracle A ∈ NP (i.e. x ∈ L implies that gapMA(x) =
1, and x 6∈ L implies that gapMA(x) = 0), such that the machine MA makes
UP-like queries to A, then L is in SPP.

• Suppose a function f : Σ∗ → Σ∗ is in FPA (i.e. f is computed by a
polynomial-time oracle transducer MA) where A ∈ NP, such that the ma-

chine MA makes UP-like queries to A, then f is in FPSPP.

2.2 Permutation group preliminaries

The set of all permutations on the set [n] = {1, 2 . . . , n} is a group under
composition of permutations. This group is the symmetric group of degree n
and is denoted by Sn. A permutation group on the set [n] is a subgroup of Sn.

We use letters g, h, . . . , σ, τ, π, . . . with subscripts and superscripts to denote
elements of Sn and i, j and k for the elements of the set [n]. Subsets and
subgroups of Sn are denoted by capital letters A, G, H etc. For two groups G
and H, we write H ≤ G to denote that H is a subgroup of G (not necessarily
a proper subgroup).

We use the following standard notation in permutation group theory [35,25].
For g ∈ Sn and i ∈ [n], we denote by ig the image of i under permutation
g. The composition g1g2 of permutations g1, g2 ∈ Sn is defined left to right:
i.e. applying g1 first and then g2. More precisely, ig1g2 = (ig1)g2 for all i ∈ [n].
For A ⊆ Sn and i ∈ [n] we denote the set {ig|g ∈ A} by iA. In particular, if
A ≤ Sn then iA is the orbit of i under the action of A on [n].

If G ≤ Sn then for each i ∈ [n], we let G(i) denote the subgroup {g ∈ G | jg = j
for each j ∈ [i]}. G(i) is called the pointwise stabilizer of [i] in G.

The identity permutation is denoted by 1 (we use 1 to denote the identity of all
groups) and the subgroup consisting of only 1 is denoted 1. The permutation
group generated by a subset A of Sn is the smallest subgroup of Sn containing
A and is denoted by 〈A〉.

For the algorithmic problems considered in this paper, we assume that a per-
mutation π in Sn is presented as the ordered sequence (1π, 2π, . . . , nπ). Further,
we assume that subgroups of Sn are presented by generator sets.
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Let G be a group and H be a subgroup of G. For ϕ ∈ G the subset Hϕ =
{πϕ : π ∈ H} of G is a right coset of H in G. Two right cosets of H in
G are either disjoint or identical. Thus, the right cosets of H in G form a
partition of G. When G is finite this partition is finite and can be written as
G = Hϕ1 ∪Hϕ2 ∪ . . . ∪Hϕk. Each right coset of H has cardinality equal to
|H| and the set {ϕ1, ϕ2, . . . , ϕk} is a set of distinct coset representatives of H
in G.

As developed by Sims [32], pointwise stabilizers are fundamental in the design
of algorithms for permutation group problems. The structure used is the chain
of stabilizers subgroups in G given by: 1 = G(n) ≤ G(n−1) ≤ . . . ≤ G(1) ≤
G(0) = G. Let Ci be a complete set of right coset representatives of G(i) in
G(i−1), 1 ≤ i ≤ n. Then

⋃n−1
i=1 Ci forms a generator set for G. Such a generator

set is called a strong generator set for G [32,16]. Any g ∈ G has a unique
factorization g = g1g2 . . . gn, with gi ∈ Ci.

We now recall two basic algorithmic results concerning permutation groups
that are essential ingredients in the proof of our main result in Section 4.
These algorithms are originally due to Sims [32], and the polynomial-time
analysis is from [16]. Further details can be found in the survey article by
Luks [25] and the monograph by Hoffman [18].

Theorem 9 Given as input the generator set S for a permutation group
G ≤ Sn, the following two basic algorithmic tasks can be implemented in time
polynomial in n

(1) For each element i ∈ [n], its orbit iG = {ig | g ∈ G}, can be computed in
polynomial time. Furthermore, for each j in the orbit iG we can compute
in polynomial time an element g ∈ G such that ig = j.

(2) The tower of subgroups 1 = G(n) ≤ G(n−1) ≤ . . . ≤ G(1) ≤ G can be
computed in time polynomial in n. (I.e. the right coset representative sets
Ci for the groups G(i) in G(i−1), 1 ≤ i ≤ n can be computed in polynomial
time giving a strong generator set for each G(i) including G).

3 Computing the least element of a right coset

We define the lexicographic ordering ≺ of permutations in Sn induced by the
natural order of [n] as follows: For two permutations π 6= τ ∈ Sn we say that
π ≺ τ if for some i ∈ [n] we have

iπ < iτ and jπ = jτ for 1 ≤ j ≤ i− 1.

Clearly, this is a total order on Sn. Writing a permutation π as the ordered

9



sequence (1π, 2π, . . . , nπ) this is clearly the natural lexicographic ordering on
these sequences with the sequence (1, 2, . . . , n) as the least element of Sn and
the sequence (n, n− 1, . . . , 1) as the last element of Sn.

In this section we describe a simple polynomial-time algorithm that takes as
input a permutation group 〈A〉 = G ≤ Sn and a permutation σ ∈ Sn and
computes the lexicographically least element of the right coset Gσ of G in Sn.
This algorithm is a crucial ingredient in the proof of the main theorem in the
next section.

Theorem 10 There is a polynomial-time algorithm that takes as input a per-
mutation group 〈A〉 = G ≤ Sn and a permutation σ ∈ Sn and computes the
lexicographically least element of the right coset Gσ.

PROOF.

We describe the algorithm and then argue its correctness.

Input: G ≤ Sn, σ ∈ Sn;
Output: Lexicographically least element in Gσ ;
Let G(n) ≤ G(n−1) ≤ . . . ≤ G(1) ≤ G(0) = G be the tower of subgroups of G
where, by Theorem 9, the generator set for each G(i) and the strong
generator set for G can be computed in polynomial time;
π0 = σ;

for i := 0 to n− 1

find the element y in (i+ 1)G
(i)

such that yπi is minimum;

(* This can be done in polynomial time as the entire orbit (i+ 1)G
(i)

of i+ 1 in G(i), which is a set of size at most n− i, can be computed in
polynomial time by applying Theorem 9, and finding the minimum
in the orbit takes linear time. *);
Let gi ∈ G(i) be such that (i+ 1)gi = y;
(* By Theorem 9, gi can be computed in polynomial time *);
πi+1 := giπi;

endfor;
Output πn;

Since π0 = σ and G(n−1) = {1}, it suffices to prove the following claim in
order to show that the algorithm computes the lexicographically least element
of Gσ.

Claim 11 For all 0 ≤ i < n − 1 the lexicographically least element of G(i)πi
is in G(i+1)πi+1.

Proof of Claim. By definition, πi+1 = giπi, where gi is in G(i) such that gi
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maps i + 1 to y ∈ (i + 1)G
(i)

and such that yπi = x is the minimum element

in {zπi | z ∈ (i + 1)G
(i)}. Since G(i) fixes each element in the set [i] and

since gi ∈ G(i), we can see that for every 1 ≤ k ≤ i , for each g ∈ G(i) and
h ∈ G(i+1), we have khπi+1 = kπi+1 = kgiπi = kπi = kgπi . In particular if ρ is
the lex-least element of G(i)πi, every element in G(i+1)πi+1 agrees with ρ on
the first i elements.

Furthermore, for each g ∈ G(i+1) notice that (i + 1)gπi+1 = (i + 1)πi+1 =
(i+ 1)giπi = x, where x is defined above. It is clear that G(i+1)πi+1 is precisely
the subset of G(i)πi each of whose elements maps i + 1 to x. Together with
the fact that (i + 1)ρ = x (by the lex-least property of ρ), we get the desired
conclusion.

By induction and the above claim it follows that the lex-least element of
Gσ = G(0)π0 is in G(n)πn = {πn}. Thus, πn is the desired lexicographically
least element of Gσ. 2

The polynomial-time algorithm of Theorem 10 can be generalised to compute
the lexicographically least element of τGσ.

Corollary 12 There is a polynomial-time algorithm that takes as input a per-
mutation group 〈A〉 = G ≤ Sn and two permutations τ, σ ∈ Sn, and computes
the lexicographically least element of τGσ. In particular, the lexicographically
least element of a left coset τG can also be computed in polynomial time.

PROOF. Notice that τGσ = τGτ−1τσ and τGτ−1 is a subgroup of Sn with
generating set {τgτ−1 | g ∈ A}. The result follows directly from Theorem 10
applied to the group τGτ−1 and the permutation τσ. 2

4 Graph Isomorphism in SPP

We are ready to prove the main theorem of the paper. Recall that the Graph
Isomorphism problem is the following decision problem: GI = {(X1, X2) | X1

and X2 are isomorphic}. A related problem is AUTO which is a functional
problem: given a graph X as input the problem is to output a strong generator
set for Aut(X). It is well-known from the result of Mathon [26] (see e.g. [23])
that GI and AUTO are polynomial-time Turing equivalent.

Thus, in order to show that GI ∈ SPP it suffices to show that AUTO ∈ FPSPP.
In other words, it suffices to show that there is a deterministic polynomial-
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time Turing machine M with oracle A ∈ SPP that takes a graph X as input
and outputs a strong generator set for Aut(X).

We observe here that the problem AUTO itself is one among a class of prob-

lems, each of which we will show is in FPSPP by giving such an algorithm
for the following generic problem FIND-GROUP which we formally describe
below:

Let Gn denote the set of all subgroups of Sn, for each n. Let G denote the
union

⋃Gn. The FIND-GROUP problem is defined by a function

f : Σ∗ × 0∗ −→ G,

where to each pair 〈x, 0n〉 in the domain, the image f(〈x, 0n〉) is a subgroup of
Sn. When the function f is fixed and n is given, it is more convenient notation
to denote f(〈x, 0n〉) by Gx.

Furthermore, for each subgroup f(〈x, 0n〉) we assume that we have an efficient
membership test. More precisely, we assume that we have access to a procedure
MEMB(x, g), that takes x and g ∈ Sn as input, and evaluates to true if and
only if g ∈ Gx in time polynomial in n and |x|. The FIND-GROUP problem is
to compute a strong generator set for Gx given 〈x, 0n〉 as input.

The problem FIND-GROUP is generic in the sense that for different functions f
we get different problems. For instance, in the case of AUTO, for each n vertex
graph X, encoded as x ∈ Σ∗, we can define f(〈X, 0n〉) = Aut(X) and for
m 6= n we can define f(〈X, 0m〉) as the trivial subgroup 1 of Sm. The function
MEMB(x, g) is polynomial-time computable as checking whether g ∈ Sn is in
Aut(X) can be done in time polynomial in n.

Remark. An FPSPP algorithm for FIND-GROUP allows us to show at one
stroke that, apart from GI, several other permutation group problems are in
SPP. In particular, we show in the next section that the hidden subgroup

problem for permutation groups has an FPSPP algorithm.

Theorem 13 There is an FPSPP algorithm for the FIND-GROUP problem.

PROOF. Let 〈x, 0n〉 be an input instance of FIND-GROUP. The goal is to
compute a strong generator set for Gx ≤ Sn using MEMB as subroutine. As
we have fixed the input, we will sometimes drop the subscript and write G
instead of the group Gx.

Our goal is to design an FPSPP algorithm for finding the coset representatives
of G(i) in G(i−1) for each i in the tower of subgroups 1 = G(n−1) ≤ G(n−2) ≤
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. . . ≤ G(1) ≤ G(0) = G. Starting with G(n−1), which is trivial, the algorithm
will build a strong generator set for G(i) in decreasing order of i until finally it
computes a strong generator set for G(0) = G. Thus, it suffices to describe how
the algorithm will compute the coset representatives of G(i) in G(i−1) assuming
that a strong generator set for G(i) is already computed.

We first introduce a definition and notation. A partial permutation on the set
[n] is an injective function π : I −→ [n], where the domain I of π is a subset
of [n]. Thus, π is any function that can be extended to a permutation in Sn.
We say that a partial permutation ϕ extends π if the domain of ϕ contains I
and iϕ = iπ for all i ∈ I. Let π : I −→ [n] be a partial permutation and let
i ∈ [n]\I. We denote by π[i 7→ j] the unique partial permutation that extends
π to the domain I ∪ {i} by mapping i to j.

For a subgroup H ≤ Sn and g ∈ Sn let lex−least(Hg) denote the lexicograph-
ically least permutation in the coset Hg. We next define a language in NP to
which our main algorithm will make UP-like queries:

L= {〈x, 0n, S, i, j, π〉 | S ⊆ G(i)
x , π is a partial permutation that fixes

each of 1, . . . , i− 1 and iπ = j, and there is a g ∈ G(i−1)
x such that g

extends π and g = lex−least(〈S〉g)}.

Partial permutation π is part of instance 〈x, 0n, S, i, j, π〉, as we will use L as
an oracle to do a prefix search for the lexicographically least g ∈ G(i−1)

x such
that ig = j. We now describe an NP machine N that accepts L.

Description of Machine N ;
Input: 〈x, 0n, S, i, j, π〉;
Verify using MEMB that S ⊆ G(i)

x ;
Guess g ∈ Sn;

if g ∈ G(i−1)
x and ig = j and g extends π and g = lex−least(〈S〉g)

then ACCEPT
else REJECT;

Clearly, N is an NP machine that accepts L. The crucial point is that if
ig = j then for every element h ∈ 〈S〉g, ih = j. Also, using the algorithm in
Theorem 10 the lexicographically least element of 〈S〉g can be computed in
polynomial time.

Claim 14 If 〈S〉 = G(i) then the number of accepting paths of N on input
〈x, 0n, S, i, j, π〉 is either 0 or 1. In general, on input 〈x, 0n, S, i, j, π〉, N has

either 0 or |G
(i)|
|〈S〉| accepting paths.

Proof of Claim. Suppose 〈x, 0n, S, i, j, π〉 ∈ L and 〈S〉 = G(i). Notice that

13



if for some g ∈ G(i−1) we have ig = j (for j > i), then 〈S〉g consists of all
elements in G(i−1) that map i to j. Thus the unique guess in Sn made by N
that leads to acceptance is the lexicographically least element of 〈S〉g. On the
other hand, if 〈S〉 is a proper subgroup of G(i) then G(i)g can be written as
a disjoint union of |G(i)|/|〈S〉| many right cosets of 〈S〉. Thus, in general N
would have |G(i)|/|〈S〉| many accepting paths if 〈x, 0n, S, i, j, π〉 is in L.

We are now ready to describe an FPL algorithm for FIND-GROUP. The al-
gorithm is designed so it queries L for a 〈x, 0n, S, i, j, π〉 only if 〈S〉 = G(i),
thereby ensuring that it makes only UP-like queries to L. Finally, by Lemma 8

we can convert this algorithm to an FPSPP algorithm.

(* FPL algorithm CONSTRUCT(〈x, 0n〉 *);
Ci := ∅ for every 0 ≤ i ≤ n− 2;
(* Ci will finally be a complete set of coset representatives of G(i+1) in G(i) *).
Di := ∅ for every 0 ≤ i ≤ n− 2;
Dn−1 = 1;
(* Di will finally be a strong generator set for G(i) for each i. *)

for i := n− 1 downto 1
(* Di is already computed at the beginning of the ith iteration
and at the end of the ith iteration we have Di−1 *)
Let π : [i− 1]→ [n] be the partial permutation
that fixes all elements from 1 to i− 1;
(* in case i = 1 this is the everywhere undefined partial permutation *)

for j := i+ 1 to n
π′ := π[i 7→ j];
(* π′ extends π to [i] by mapping i to j *)
if 〈x, 0n, Di, i, j, π

′〉 ∈ L then
(* There is an element in G(i−1) that maps i to j. We will find
it by a prefix search that extends the partial permutation π′ *)
for k := i+ 1 to n

find the element ` not in the range of π′ such that
〈x, 0n, Di, i, j, π

′[k 7→ `]〉 ∈ L;
π′ := π′[k 7→ `];
(* At this point π′ will be a permutation in Sn *)

endfor
Ci−1 := Ci−1 ∪ {π′};
endif

endfor
(* At this point Ci−1 is a complete set of coset
representatives of G(i) in G(i−1) *)

Di−1 = Di ∪ Ci−1;
Output D0

14



We claim that a call to the FPL algorithm CONSTRUCT(〈x, 0n〉) outputs a
strong generator set D0 for the group G = Gx. We show this by induction.
Initially, Dn−1 = 1 clearly generates G(n−1) = 1. Suppose at the beginning of
the ith iteration it holds that Di is a strong generator set for G(i). It suffices to
show that at the end of the ith iteration Di−1 = Di∪Ci−1 is a strong generator
set for G(i−1). For each j : i+1 ≤ j ≤ n, the query 〈x, 0n, Di, i, j, π

′〉 ∈ L checks
if there is an element in G(i−1) that maps i to j. The subsequent prefix search
with queries to L computes the lexicographically least element in G(i−1) that
maps i to j. Furthermore, by Claim 14, as Di generates G(i), all queries made
to L are UP-like. Thus, at the end of the ith iteration Ci−1 is a complete set
of coset representatives for G(i) in G(i−1) and hence Di−1 is a strong generator
set for G(i−1). Thus at the end D0 is a a strong generator set for G. Therefore,
we have an FPL algorithm problem for FIND-GROUP.

Finally, since the FPL algorithm makes only UP-like queries to the NP oracle

L, it follows from Lemma 8 that FIND-GROUP has an FPSPP algorithm. 2

Remark. Let UPSV denote the class of functions f : Σ∗ −→ Σ∗ for which
there is a nondeterministic polynomial-time transducer M that on each in-
put x has a unique accepting path on which it outputs f(x). We note that

using UPSV there is alternative description of our FPSPP algorithm for

FIND-GROUP: we can first design an UPSVSPP algorithm, where the prefix
search that we do in CONSTRUCT(〈x, 0n〉) is replaced by directly guessing
a permutation in the right coset (consisting of elements that fix 1 to i − 1
and map i to j) and rejecting along all paths on which we do not guess the
lexicographically least element of the coset. Then, by a general prefix search

argument we can see that FPSPP and UPSVSPP are the same and hence

conclude that FIND-GROUP is in FPSPP.

As we already noted, GI and AUTO are polynomial-time equivalent and AUTO,

being an instance of FIND-GROUP has an FPSPP algorithm by Theorem 13.

Since SPPSPP = SPP and SPP ⊆ ModkP for each k ≥ 2, the next corollary
is an immediate consequence.

Corollary 15 Graph Isomorphism is in SPP and hence in ModkP for every
k ≥ 2.

5 Hidden subgroup problem

We recall the general definition of the hidden subgroup problem.

Definition 16 The hidden subgroup problem HSP has an input instance a

15



finite group G (presented by a finite generator set) and we are given (in the
form of an oracle) a function f from G to some finite set X such that f is
constant and distinct on different right cosets of a hidden subgroup H of G.
The problem is to determine a generator set for H.

Many natural problems like Graph Isomorphism, Integer Factoring etc, can be
cast as a special case of HSP. An efficient quantum algorithm for the general
problem will result in efficient quantum algorithm for all these. Based on suit-
able generalizations of Shor’s technique [31], the above problem has efficient
quantum algorithms for the case when G is an abelian group (see e.g. [27]
for an exposition). However, the status of HSP is open for general nonabelian
groups, except for some special cases where it is settled (see, e.g. [17,19]). In
particular, even when we restrict attention to G being the permutation group
Sn, it is not known if HSP has quantum polynomial time algorithms except in
special cases.

Independently, it is shown by Fortnow and Rogers [15] that the class BQP of
languages that have polynomial-time quantum algorithms is closely connected
with language classes that are low for PP. In particular, it is shown in [15]
that BQP ⊆ AWPP where AWPP is a language class that generalizes both
BPP and LWPP.

Theorem 17 [15] BQP ⊆ AWPP and hence BQP is low for PP.

In this section we show as a corollary to Theorem 13 that there is an FPSPP

algorithm for the HSP problem over permutation groups.

Theorem 18 There is an FPSPP algorithm for the HSP problem over permu-
tation groups, and hence HSP over permutation groups is low for PP, GapP,
⊕P, C=P etc.

PROOF. We are given (in the form of an oracle) a function f from Sn to a
finite set X such that f is constant and distinct on different right cosets of a

hidden subgroup H of Sn. The FPSPP will first compute f(1) with one query
to f . Now, notice that f gives a membership test for the unknown subgroup
H, because a permutation g ∈ Sn is in H if and only if f(g) = f(1). Thus we
essentially have a membership test as required for the FIND-GROUP problem
of Theorem 13. The result now follows by invoking the algorithm described
in the proof of Theorem 13. Lowness for PP also follows as SPP is low for
PP. 2

Using the FPSPP algorithm for the FIND-GROUP problem we can show that
other algorithmic problems on permutation groups [25] which are not known to
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have polynomial-time algorithms are also in SPP. Among the different prob-
lems mentioned in [25] we pick the following two examples as most other
problems are known to be polynomial time reducible to these.

The input instance to the CONJ-GROUP problem consists of three subgroups
〈S〉 = G, 〈S1〉 = H1, and 〈S2〉 = H2 of Sn, and the problem is to determine if
there is a g ∈ G such that gH1g

−1 = H2 (i.e. H1 and H2 are G-conjugate).

A closely related problem NORM has input instance two subgroups G and
H of Sn, and the problem is to determine a generator set for the normal-
izer subgroup NG(H) = {g ∈ G | gHg−1 = H}. Just as GI and AUTO are
polynomial-time equivalent, it turns out that CONJ-GROUP and NORM are
also polynomial-time equivalent [25].

Theorem 19 The problem NORM is in FPSPP and CONJ-GROUP is in
SPP.

PROOF. We show that NORM is an instance of FIND-GROUP. The theorem
will follow as a direct consequence of Theorem 13. It suffices to observe that
given subgroups 〈S〉 = G and 〈T 〉 = H of Sn, testing if g ∈ NG(H) (i.e.
gHg−1 = H) can be carried out in polynomial time. More precisely, it is clear
that gHg−1 = H if and only if gtg−1 ∈ H for every t ∈ T , which can be
checked in polynomial time by Theorem 9. 2

As already mentioned, a consequence of the above theorem is that several
other decision problems in permutation groups (e.g. coset intersection, double
coset equality, set transporter) which are polynomial-time many-one reducible
to CONJ-GROUP are also in SPP.

6 Parallel queries to NP

In this section we discuss an application of our main theorem Theorem 13 to
a different problem concerning Graph Isomorphism.

We first recall the definitions of two important function classes. Let FPNP
||

denote the class of functions computable in polynomial time with parallel

queries to an NP oracle. Likewise, let FPNP[log] denote the class of functions
computable in polynomial time with logarithmically many adaptive queries

to an NP oracle. In contrast to the decision problem setting where PNP
|| =

PNP[log], it is believed to be unlikely that FPNP
|| = FPNP[log]. Indeed, it is
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shown in [11,30,9] that FPNP
|| = FPNP[log] implies NP = RP. It is useful to

recall the proof of this result. Let SAT denote the set of satisfiable Boolean
formulas. The key idea in the proof is that given a boolean formula F with
a unique satisfying assignment, the satisfying assignment can be computed in

FPNP
|| . Thus, if FPNP

|| = FPNP[log], we can find a satisfying assignment of F
in polynomial time by enumerating the polynomially many candidates (given
by all possible answers to the logarithmically many queries) and testing. Since
SAT is randomly many-one reducible to USAT (the set of boolean formulas

with unique satisfying assignment), the collapse result FPNP
|| = FPNP[log]

implies NP = RP follows.

A question that has remained open is whether we can derive the collapse
NP = P from the same assumption. The paper by Jenner and Torán [20]
contains a detailed investigation of this question.

In general, we could ask which problems in NP are in P as a consequence of

the assumption FPNP
|| = FPNP[log]. Consider a language L ∈ NP defined by

a set A in P and a polynomial bound p as follows:

x ∈ L ⇐⇒ ∃y ∈ Σ∗ : |y| ≤ p(|x|) and 〈x, y〉 ∈ A.

Given an x ∈ L the problem of computing a witness y ∈ Σ∗ such that |y| ≤
p(|x|) and 〈x, y〉 ∈ A is the search problem corresponding to L. Of course, the
search problem depends on the set A. Suppose L has the property that this

search problem can be solved in FPNP
|| . Then, analogous to the discussion

above regarding SAT, it is easy to see that FPNP
|| = FPNP[log] implies that

L is in P. Using the FPNP[log] machine for the search problem, in polynomial
time we can simply enumerate the entire set of polynomially many candidate
witnesses and check if there is a y among them such that 〈x, y〉 ∈ A. Thus we
have the following.

Proposition 20 Suppose L ∈ NP has a corresponding search problem that

can be solved in FPNP
|| . Then FPNP

|| = FPNP[log] implies that L is in P.

A natural example for such a language L is the Graph Automorphism problem

GA as shown in [24]. Thus, FPNP
|| = FPNP[log] implies GA is in P [24].

For Graph Isomorphism, however, it is open if the search problem can be

solved in FPNP
|| . Thus the above proposition is not applicable. Nevertheless,

we will show that if FPNP
|| = FPNP[log] then GI is in P as a consequence of

Theorem 13 and another general proposition similar to Proposition 20.
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We recall the definition of promise problems.

Definition 21 [11] A promise problem is a pair of sets (Q,R). A set L is called
a solution of the promise problem (Q,R) if for all x ∈ Q, x ∈ L⇔ x ∈ R.

A promise problem of particular interest is (1SAT, SAT), where 1SAT con-
tains precisely those Boolean formulas which have at most one satisfying as-
signment. Observe that any solution of the promise problem (1SAT, SAT) has
to agree with SAT in the formulas having a unique satisfying assignment as
well as in the unsatisfiable formulas. By the results of Selman [30,11] we know

that FPNP
|| = FPNP[log] implies that every solution to the promise problem

(1SAT, SAT) is in P.

Proposition 22 Suppose L ∈ NP is accepted by a deterministic polynomial-
time oracle machine M with access an NP oracle A such that M makes only

UP-like queries to A. Then FPNP
|| = FPNP[log] implies that L is in P.

PROOF. Recall that an oracle query q to A is UP-like if the NP machine
for A has at most one accepting path on input q. Since all oracle queries
made by the machine M to NP oracle A are UP-like, we can replace the
oracle with any solution to the promise problem (1SAT, SAT): let f denote
the standard parsimonious reduction from A to SAT. Then, each query q to A
is transformed to a SAT query f(q) which will be correctly answered by any
solution to (1SAT, SAT). But the promise problem (1SAT, SAT) is in P by

the assumption FPNP
|| = FPNP[log]. Thus, it follows that L is also in P. 2

We can now easily derive our claimed result for Graph Isomorphism, and HSP
for permutation groups.

Theorem 23 FPNP
|| = FPNP[log] implies that the FIND-GROUP problem

for permutation groups can be solved in polynomial time. Hence, it follows

that FPNP
|| = FPNP[log] implies Graph Isomorphism is in P and it implies

that the hidden subgroup problem for permutation groups is in P.

PROOF. As a consequence of Theorem 13 it follows that FIND-GROUP has
a polynomial-time oracle algorithm that makes only UP-like queries to an

NP oracle A. Thus, by Proposition 22 it follows that FPNP
|| = FPNP[log]

implies FIND-GROUP can be solved in polynomial time. Consequently, Graph
Isomorphism and the hidden subgroup problem for permutation groups are in

P under the assumption FPNP
|| = FPNP[log]. 2
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7 Concluding remarks

In this paper we have shown that Graph Isomorphism is in SPP. We have also
shown that several other problems on permutation groups are in SPP. All

these results are byproducts of the FPSPP algorithm for the problem FIND-
GROUP. We would like to know if better upper bounds can be shown for
the complexity of special cases of graph isomorphism especially tournament
isomorphism. Specifically, is tournament isomorphism in UP? It is known that
the automorphisms of a tournaments forms a solvable group and has odd order.
Can this additional property be somehow exploited?

A related problem is Graph Canonization. Let f be a function from the family
of finite graphs, G, to itself. We say that f is a canonization if for every X ∈ G,
f(X) ∼= X and for every X1, X2 ∈ G, f(X1) = f(X2) iff X1

∼= X2. There is
an O(nlogn) algorithm for Tournament Isomorphism by giving a canonization
procedure for tournaments [4]. The complexity of Graph Canonization is in-

triguing. The only known upper bound for the problem is FPNP. It is known
that Graph Isomorphism is polynomial-time reducible to Graph Canoniza-
tion. Is the converse true, at least for tournaments? Is Graph Canonization
for tournaments low for PP?

In order to study the complexity of group-theoretic problems in a general set-
ting, Babai and others in [6,5,3], have developed a theory of black-box groups.
The main results in [6,5,3] were to put several natural problems in NP∩coAM
or AM∩ coAM. However, lowness for PP has been addressed only for the case
of solvable black-box groups in [1,34], where many of these problems are shown
to be in SPP. It is interesting to ask if our approach of showing membership
in SPP via finding the lexicographically least element in a coset can be gener-
alized to black-box groups. More precisely, what is the complexity of finding
a canonical element in the right coset of a black-box group?

Acknowledgment. We are grateful to the referees for useful remarks and
suggestions that have helped improve the presentation.
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[8] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity II, volume 22 of
ETACS monographs on theoretical computer science. Springer-Verlag, Berlin,
1990.

[9] R. Beigel. NP-hard sets are P-superterse unless R = NP, January 04 1995.

[10] R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive
proofs. Information Processing Letters, 25:127–132, May 1987.

[11] S. Even, A. L. Selman, and Y. Yacobi. The complexity of promise problems with
applications to public-key cryptography. Information and Control, 61(2):159–
173, May 1984.

[12] S. A. Fenner. PP-lowness and a simple definition of AWPP. Theory of
Computing Systems, 36(2):199–212, 2003.

[13] S. A. Fenner, L. J. Fortnow, and S. A. Kurtz. Gap-definable counting classes.
In Structure in Complexity Theory Conference, pages 30–42, 1991.

[14] S.A. Fenner, L.J. Fortnow, S. A. Kurtz, and L. Li. An oracle builder’s toolkit.
In SCT: Annual Conference on Structure in Complexity Theory, pages 120–131,
1993.

[15] L. J. Fortnow and J. D. Rogers. Complexity limitations on quantum
computation. In IEEE Conference on Computational Complexity, pages 202–
209, 1998.

[16] M. L. Furst, J. E. Hopcroft, and E. M. Luks. Polynomial-time algorithms for
permutation groups. In IEEE Symposium on Foundations of Computer Science,
pages 36–41, 1980.

[17] S. Hallgren, A. Russel, and A. Ta-Shma. Normal subgroup reconstruction and
quantum computing using group representation. In Proceedings of the 32nd

ACM Symposium on Theory of Computing, pages 627–635, Portland, Oregon,
21-23 May 2000.

21



[18] C. M. Hoffmann. Group-Theoretic Algorithms and Graph Isomorphism.
Springer, Berlin, Heidelberg, 1982.

[19] G. Ivanyos, F. Magniez, and M. Santha. Efficient quantum algorithms for some
instances of the non-abelian hidden subgroup problem. In 13th ACM Symposium
on Parallel Algorithms and Architectures, pages 263–270, 2001.

[20] B. Jenner and J. Torán. Computing functions with parallel queries to NP.
Theoretical Computer Science, 141(1–2):175–193, 1995.
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[29] U. Schöning. Graph isomorphism is in the low hierarchy. In Symposium on
Theoretical Aspects of Computer Science, pages 114–124, 1987.

[30] A. L. Selman. A taxonomy of complexity classes of functions. Journal of
Computer and System Sciences, 48(2):357–381, 1994.

[31] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, 1997.

[32] C. C. Sims. Computational methods in the study of permutation groups.
Computational problems in Abstract Algebra, pages 169–183, 1970.

[33] L. G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189–201, 1979.

[34] N. V. Vinodchandran. Counting complexity of solvable black-box group
problems. SIAM Journal of Computing, 33(4):852–869, 2004.

[35] H. Wielandt. Finite Permutation Groups. Academic Press, New York, 1964.

22


