
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Verse: An EDSL for cryptographic primitives
Abhishek Dang

Department of Computer Science and Engineering
IIT Kanpur

Kanpur, Uttar Pradesh, India
ahdang@cse.iitk.ac.in

Piyush P Kurur
Department of Computer Science and Engineering

IIT Kanpur
Kanpur, Uttar Pradesh, India

ppk@cse.iitk.ac.in

ABSTRACT
Cryptographic primitives need high-speed implementations that
are also resistant to side channel attacks. The absolute control
over instructions and registers that such implementations demand
makes assembly language programming a necessity. In this article,
we describe Verse, a typed low-level language embedded in Coq
designed specifically to generate assembly language programs for
cryptographic primitives. Despite being a low-level language, the
programming experience is markedly high-level:

• The type system of Verse is rich enough to even prevent
errors in array indexing and endian conversion.

• Being embedded in Coq, we have at our disposal Gallina, the
underlying functional programming language, as a macro
assembler for code generation, and Ltac, the tactic language,
as an automation tool for proof obligations inherent to our
type system.

We also provide a generic framework to formulate semantic
aspects of Verse. This framework has value beyond providing an
interpretation of Verse in Coq. We demonstrate this versatility
by using it to localise uninitialised/clobbered variable use, and
arithmetic overflows.

CCS CONCEPTS
• Software and its engineering→Domain specific languages;
• Security and privacy→ Logic and verification.

KEYWORDS
Coq, EDSL, Cryptography, assembly language

ACM Reference Format:
Abhishek Dang and Piyush P Kurur. 2018. Verse: An EDSL for cryptographic
primitives. In The 20th International Symposium on Principles and Practice
of Declarative Programming (PPDP ’18), September 3–5, 2018, Frankfurt am
Main, Germany. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3236950.3236971

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6441-6/18/09. . . $15.00
https://doi.org/10.1145/3236950.3236971

1 INTRODUCTION
High-level languages with their ever improving compilers have
made assembly language programming mostly irrelevant. How-
ever, implementing cryptographic primitives is one application
domain where there is still some justification for using an assembly
language. While performance is an obvious motivation for it, pro-
gramming in assembly language is often necessary to guard against
various side channel attacks - attacks that make use of information
that is leaked inadvertently by implementations. Minimising side
channel leaks requires precise control over the machine instruc-
tions that are executed when performing a cryptographic operation.
The output of modern optimising compilers is too unpredictable
for such a setting. For example, in its dead code elimination phase,
a compiler might eliminate the code that wipes a secret password
from a memory location; it might short circuit certain branching
instructions based on cryptographic secrets, thus leaking sensitive
information through timing data.

Programming in an assembly language, due to its inherent low-
level nature, is tedious and error prone. Moreover, code written for
a particular architecture cannot easily be ported over to a different
architecture. This incurs a significant maintenance overhead. In
this article, we describe Verse, an embedded domain specific lan-
guage (EDSL) in Coq for generating low-level assembly language
implementations of cryptographic primitives, which attempts to
solve some of these problems.

Verse is designed to address two seemingly irreconcilable goals
- provide the safety and portability of a high-level language, and
yet be extremely close to the underlying machine so that cryp-
tographic side channels can be controlled. At its core, Verse is a
typed low-level language with an instruction set that is in one-to-
one correspondence with the underlying machine. It gives a lot of
control to the programmer, including, for example, the ability to
control aspects like register allocation. Such precise control over
sensitive data helps avoid many side channel attacks that are very
hard to prevent in a typical high-level language. However, Verse
also borrows a few features from high-level languages, prominent
among which is a type system. Its type system is strong enough
to prevent many common programming errors, including out of
bound array indexing, at compile time (Section 3). A feature unique
to Verse is its ability to track endianness of array variables. Not
only does it prevent a lot of errors, it also adds to the portability:
a verse program need not be rewritten just to make it work of an
architecture with a different endianness (Section 3.4).

Cryptographic implementations need mostly arithmetic and bit
wise operations. The instruction set of Verse is a common notation
for these operations which makes it possible to share code frag-
ments across supported architectures and thus regain some of the

1

https://doi.org/10.1145/3236950.3236971
https://doi.org/10.1145/3236950.3236971
https://doi.org/10.1145/3236950.3236971

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Abhishek Dang and Piyush P Kurur

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

portability of high-level languages. Currently, Verse supports code
generation for X86 64 and portable C.

Finally, being embedded in a powerful language, Verse avoids
the tedium that is often associated with programming in a low-
level language by the use of Coq features like sectioning, modules,
functions and tactics. In particular, we can use Coq functions as
macros to generate repetitive code patterns.

2 A TOUR OF VERSE THROUGH EXAMPLES
Programming in Verse is carried out in two stages. In the first stage,
the Verse programmer writes a generic program which can poten-
tially be targeted at multiple architectures. This stage, while largely
independent of the target architecture, needs to be careful about
its instruction selection. Code generation in Verse is, mostly1, a
one-to-one translation of its instructions to those of the underlying
architecture. Thus, for example, if the target architecture is X86,
a program that uses the instruction X ::= Y [+] Z will fail during
code generation because of the lack of support for this 3-operand
instruction in X86. Beyond such considerations, Verse is similar to
a typed low-level language like LLVM assembly. However, being
an embedded coding environment, Verse code can be generated via
macros written in Gallina, the functional language underlying Coq.
Using macros Verse provides, or defining problem specific ones,
makes programming relatively abstract.

In the second stage - code generation - the user needs to des-
ignate which program variables are parameters and which local
variables are to be allocated into registers, and then give an explicit
allocation intomachine registers for the latter (at this time the target
architecture is fixed). While the code generator takes care of pa-
rameter allocation according to the C calling convention and offset
calculation for the local variables spilled on to the stack, the pro-
grammer cannot be completely oblivious of the target architecture.
Calling conventions often reserve registers for parameter passing.
The code generator checks for misuse of already allocated register
and careless allocation can lead to frustrating failures during code
generation. This explicit allocation, a minor irritant sometimes,
gives total control over register use and is imperative to keep track
of the locations of sensitive data.

We illustrate this two stage process by giving a sample program
to implement a simplified2 form of SHA2-like message scheduling
where we take an array w of length 16 and perform the following
update (index additions done modulo 16).

w[i] += w[i + 14] + w[i + 9] + w[i+1].

We begin by importing the top level Verse module.

Require Import Verse.

Module SHA2.

The standard idiom for writing a Verse program is to define a
Coq Section which contains definitions of the program variables,
Verse code, and other auxiliary information.

1The only exceptions are some additional byte swap instructions that might be added
at the time of array indexing.
2The actual schedule uses logical functions σ0 and σ1 which we have skipped to
simplify the example

Section SCHEDULE.

The message schedule of SHA512 and SHA256 involves the same
message indices. In our simplified variant, the only difference be-
tween the two is that the former uses words of 64-bit whereas
the latter uses words of 32-bit. By making the word a Variable of
this section, our code effectively becomes polymorphic on the word

type.

Variable word : type direct.

The type direct in the above definition is the type of all direct
types, i.e. types that fit into machine registers, which includes the
word and multi-word types. See Section 3.1 for more details on
types and kinds in Verse.

A SHA2 block is a 16 length array of this word type encoded in
big endian.

Definition SIZE := 16.
Definition BLOCK := Array SIZE bigE word.

Generic variants of code are parameterised over the program
variables which will eventually be instantiated from the architec-
ture specific register set during code generation. In Verse the type
VariableT is the universe of all possible program variable types.

Variable progvar : VariableT.

What follows is the Verse program for message scheduling. First
we “declare” the program variables, the variable W, S, and T followed
by the actual message schedule.

Variable W : progvar BLOCK.
Variable S T : progvar word.

Definition WordSchedule i (boundPf : i < SIZE) : code progvar.
verse [S ::== W[- i -];

T ::== W[- (i + 14) mod SIZE -];
S ::=+ T;
T ::== W[- (i + 9) mod SIZE -];
S ::=+ T;
T ::== W[- (i + 1) mod SIZE -];
S ::=+ T;
MOVE S TO W[- i -]

].
Defined.

Having defined the code segment for scheduling a single word in
the message, we use the foreach function to generate an unrolled
loop performing the WordSchedule for every index of W.

Definition Schedule := foreach (indices W) WordSchedule.

This completes the Verse code for word scheduling. Before mov-
ing on to the code generation phase we digress and illustrate a
powerful feature of Verse, namely compile time array bound check-
ing. For example, all array indexing of the form W[- x -] in the code
fragment WordSchedule and Schedule above are indeed within the
bounds. We give a quick description on how this works out for the
user when developing Verse programs using an interactive environ-
ment like proof general. The standard idiom in Verse for defining
code segments is to introduce them through Ltac mode as shown
in the definition of WordSchedule. Every array indexing W[- x -]
generates the proof obligation x < SIZE. The verse “keyword” used
above is in fact a tactic that tries to dispose of such obligations.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Verse: An EDSL for cryptographic primitives PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Out of bound array indices raise unsatisfiable proof obligations
which, clearly, are impossible to dispose of. As a result the user
is prevented from closing the above Definition, thus ensuring cor-
rectness of array indexing. To see this in action, let us drop mod

SIZE in the expression W[- (i + 1) mod SIZE -] in the definition of
WordSchedule. This results in the following contents in the goals
buffer clearly showing an undisposed proof obligation i + 1 < SIZE.
1 subgoal, subgoal 1 (ID 154)

word : type direct
progvar : VariableT
W : progvar BLOCK
S, T : progvar word
i : nat
H : i < SIZE
============================
i + 1 < SIZE

In addition, the tactic verse prints the following helpful hint in
the response buffer
verse: unable to dispose of (i + 1 < SIZE)
possible array index out of bounds

Before we close the Coq section SCHEDULE, we need some addi-
tional definitions relevant to code generation.

Definition parameters : Declaration := [Var W].
Definition stack : Declaration := [].
Definition registers : Declaration := [Var S ; Var T].

Code generators expect the parameters to be listed first, followed
by the stack variables, and finally the register variables. The order
within the lists needs to be consistent with the listing in the section.

End SCHEDULE.

End SHA2.

2.1 Code generation
Generating a callable function out of Verse code requires us to
give the register allocation for all the variables declared in the
SHA2.registers. Allocation of SHA2.parameters and SHA2.stack is
handled by the architecture specific frame management routines in
the code generator. As a demonstration, we use portable C as the
target architecture.

Require Import Verse.Arch.C.
Definition code64bit : Doc + {Compile.CompileError}.

C.Compile.function "schedule64bit"
(SHA2.parameters Word64)
SHA2.stack

(SHA2.registers Word64).

assignRegisters (- cr Word64 "S" , cr Word64 "T" -).
statements (SHA2.Schedule Word64).

Defined.

Definition code32bit : Doc + {Compile.CompileError}.
C.Compile.function "schedule32bit"

(SHA2.parameters Word32)
SHA2.stack

(SHA2.registers Word32).

assignRegisters (- cr Word32 "S", cr Word32 "T" -).
statements (SHA2.Schedule Word32).

Defined.

In case one wants to generate the code for a different architecture,
one needs to use the appropriate code generator. Thus, a large part
of the code can be used across architectures. The above example
also demonstrates a different kind of code reuse. Both the 64-bit and
32-bit variants are generated from the same generic Verse program
by instantiating the section variable word, which gives a kind of
polymorphism, much like the template system of C++.

We generate the program text from the above code as our final
step. Compilation of a Verse programmay fail with a compiler error,
say due to the use of an unsupported instruction, but if successful,
will generate its output as a pretty printed object captured by the
type Doc. The function tryLayout converts the compilation output
to a string, which, in this case, is the corresponding C source code.

Compute (tryLayout code64bit).

The generated C code is given below:

#include <stdint.h>
void schedule64bit(uint64_t p0[16])
{

/* Local variables */

/* Register variables */
register uint64_t rT;
register uint64_t rS;

rS = Verse_from_be64(p0[0]);
rT = Verse_from_be64(p0[14]);
rS += rT;
rT = Verse_from_be64(p0[9]);
rS += rT;
rT = Verse_from_be64(p0[1]);
rS += rT;
p0[0] = Verse_to_be64(rS);

/* similar lines skipped for conciseness */

}

Notice that Verse automatically takes care of appropriate endian
conversions without any intervention from the user.

2.2 Iterative functions
The last example demonstrated the use of Verse to implement a
straight line program. Cryptographic primitives like hashes and
ciphers process a stream of data which is chunked up into fixed
size blocks, each of which is an array of a certain word type. For
example, for SHA512, the block is a 16 length array of 64-bit words
encoded in big endian. Verse gives a relatively high-level interface to
write the block processing function for such primitives. Additional
algorithms like padding strategy are not handled and need to be
provided separately.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Abhishek Dang and Piyush P Kurur

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Recall that in the case of a straight line program, we defined
a Verse program as a generic Gallina function that returns code v

parameterised over the program variable. In the case of an iterative
function, we define a program as a record of type iterator blockTy

v instead.

Record iterator (blockTy : type memory)(v : VariableT)
:= { setup : code v;

process : ∀ (block : v memory blockTy), code v;
finalise : code v

}.

In the above definition the blockTy denotes the block type used
by the primitive (Array 16 bigE Word64 for SHA512).

The block processing function is assumed to get its input, few
blocks at a time, in a buffer. Between each of these buffer opera-
tions, it needs an internal state that is passed via parameters to the
iterator function. The setup code initialises the function variables
from the parameters before it starts processing the buffer, whereas
the finalise code updates the state of the algorithm so that the
next buffer can be processed. It is the process code fragment, that
determines what needs to be done on a single block. The generated
code takes care of looping over each block provided in the buffer
and applying process on each of the them. Thus process needs to
worry only about a single block.

2.3 Sample iterator
We illustrate iterator functions using the following computational
task that models a highly insecure cipher: a block for the cipher is
an array of four 64-bit words. The key also consists of four 64-bit
words, and one needs to xor the key to the blocks. The last word
in the key is to be treated as a counter and incremented after each
block is processed. The code sample also illustrates Verse support
for array caching, a coding pattern where an array whose entries
are frequently used is held in registers to save memory access.

Module XORK.

Definition SIZE := 4.
Definition BLOCK := Array SIZE littleE Word64.
Definition KEY := Array SIZE hostE Word64.

Section XORKey.
Variable progvar : VariableT.
Arguments progvar [k] .

Variable Key : progvar KEY.

In this sample code, we do not use the array Key directly. Instead,
we maintain a cache of it in the following variables.

Variable K0 K1 K2 K3 : progvar Word64.

With this register cache in place, we first load the word Key[-
i -] in Ki . While processing the blocks, we use the variable Ki in
place of Key[- i -]. This variant is likely to be faster as we save
on memory accessing needed to index elements of Key. However,
unlike array elements Key[- i -], we do not have the ability to refer
to the register variables Ki uniformly.Without such indexing, helper
Gallina functions like foreachwould be useless and one would need
to write the code by hand, which is clearly tedious. Verse exposes a
set of helper functions to reduce such boilerplate.

Definition KeyCache : VarIndex progvar SIZE Word64

:= varIndex [K0; K1; K2; K3]%vector.
Definition keySetup := loadCache Key KeyCache.

The above definition makes KeyCache a function that maps array
index i to the variable Ki and the code fragment keySetup loads the
array into the register cache. We now give the block transformation
code (which makes use of an additional temporary register).

Variable Temp : progvar Word64.
Definition xorIth (blk : progvar BLOCK) (i : nat) (: i < SIZE)

: code progvar.
verse [Temp ::== blk[- i -];

Temp ::=ˆ KeyCache i ;
MOVE Temp TO blk[- i -]

].
Defined.
Definition blockTransform (blk : progvar BLOCK)

:= let incrementKey := [K3 ::=+ Ox "0000:0000:0000:0001"]
in foreach (indices Key) (xorIth blk) ++ incrementKey.

The changes to the cached variable KeyCache need to be moved
back to the array Key so that the cipher can xor further blocks. If all
the cached variables were updated we could use the Verse library
function moveBackCache. In this case however, it is more efficient to
only move K3 since it is the only cached variable that got modified
in the process.

Definition keyFinalise : code progvar.
verse [MOVE K3 TO Key[- 3 -]].

Defined.
We package the setup, block processing, and finalisation routine

into an iterator record, which will be used by the code generator.
Definition Iterator : iterator BLOCK progvar :=

{|
setup := keySetup;
process := blockTransform;
finalise := keyFinalise

|}.
As before, we need to declare the parameters, stack and register

variables and, finally, compile using the C.Compile.iterator tactic.
Definition parameters : Declaration := [Var Key].
Definition stack : Declaration := [].
Definition registers : Declaration

:= [Var K0; Var K1; Var K2; Var K3; Var Temp].
End XORKey.

Definition code : Doc + {Compile.CompileError}.
C.Compile.iterator XORK.BLOCK "xorblocks"

XORK.parameters

XORK.stack

XORK.registers.
assignRegisters (- cr Word64 "k0"

, cr Word64 "k1"
, cr Word64 "k2"
, cr Word64 "k3"
, cr Word64 "temp"

-).
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Verse: An EDSL for cryptographic primitives PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

statements XORK.Iterator.
Defined.

End XORK.

The skeleton of the resulting C function code is given below.
Notice the two additional arguments - blockPtr and counter - that
have been included in the function signature (on top of the declared
parameter list) and the internal while loop which goes over the list
of blocks in the buffer blockPtr.

void xorblocks(uint64_t (*blockPtr)[4],
uint64_t counter,
uint64_t p0[4]

)

{
/* initialisation skipped */

/* Register variables */
register uint64_t rtemp;
register uint64_t rk3;
register uint64_t rk2;
register uint64_t rk1;
register uint64_t rk0;

rk0 = p0[0];
rk1 = p0[1];
rk2 = p0[2];
rk3 = p0[3];

/* Iterating over the blocks */
while(counter > 0)
{

/* skipped the body */
++blockPtr; --counter; /* move to next block */

}
p0[3] = rk3;

}

While the code above was written for exposition, an implemen-
tation of the Chacha20 cipher is available in our source code repos-
itory3

3 THE DESIGN OF VERSE
Verse is designed to be as close to the underlying machine as possi-
ble. The other consideration that went into its design was its use
case - writing the inner loops of cryptographic primitives that are
meant to be called by programs or libraries written in a high-level
language. Functions written by Verse follow the C calling conven-
tion and hence Verse routines can be called by C or, for that matter,
any high-level language like OCaml or Haskell that supports FFI
calls to C. This focus allows for a rather simple design of the core
language. Verse programs are, more or less, just lists of instructions
and are designed to write only two kinds of functions (1) functions

3https://github.com/piyush-kurur/verse-coq/blob/master/src/Verse/Artifact/
ChaCha20.v

that are straight line programs and (2) functions that iterate over a
sequence of blocks, as demonstrated in the previous section. These
two classes of functions capture the essence of cryptographic prim-
itives where the former takes care of fixed input primitives like
elliptic curve signature schemes while the latter takes care of bulk
primitives like cryptographic hashes, MAC’s and ciphers.

The simple design of Verse has the following consequences.
Apart from the implicit loop that is generated by the iterator, all
loop-like constructions generated using foreach are unrolled into
a list of instructions. This might seem like a limitation of Verse.
However, genuine loops require support for conditional branching
in assembly, which, if not carefully sanitised, can leak side channel
information due to branch prediction logic in modern processors.
Getting rid of branching can therefore aid in safety. Similarly, Verse
does not support function calls but one can use the Gallina func-
tions to mimic such calls. These behave like inline functions that
are expanded out at the calling site. For the use case of Verse, we be-
lieve this is not a limitation as the burden of supporting non-inlined
functions rests with the calling high-level language.

We follow a correct by construction strategy when it comes to
supporting language features like type checking in Verse. As in
other EDSLs, programming in Verse involves directly generating
the abstract syntax tree, instead of parsing the program from a
file. The abstract syntax tree corresponding to a particular Verse
language construct is naturally represented as an inhabitant of the
associated inductive type. We design such inductive types so that
ill-typed Verse programs are not representable. For example, the
constructor for the inductive type that captures array indexing
requires, as arguments, the array variable, the index, and a proof
that the index is within bounds. As a result, out of bound array
indexing is not representable.

The main advantage of such a strategy is that we get the type
checking in Verse for free without writing a type checker and spend-
ing time proving its correctness. Here, again, the simplicity of Verse
is crucial; for otherwise, the definition of the associated ASTs would
have been too complicated to handle.

Following the above strategy, Verse ensures the following type
safety (Section 3.3):

• Arithmetic and bitwise operations are only allowed when
all the operands are of the same type.

• Targets of assignment or update operations are lvalues.
• Array indexing is always within bounds.

For a user of the Verse EDSL, directly using the inductive type
constructors is tedious due to their unnatural syntax. We make
use of Coq’s notation system to provide necessary syntactic sugar.
We also shield the user from proof obligations that arise during
array indexing by providing automatic tactics to dispose of them.
As a result, the surface syntax of Verse is very close to a high-level
language as illustrated in Section 2.

The rest of this section is a brief tour of the internals of Verse
illustrating the use of the correct by construction strategy. We
concentrate on three inductive types that form the core of Verse
— the inductive type type of Verse types, the type VariableT of
program variables, and the inductive type instruction of generic
Verse instructions.

5

https://github.com/piyush-kurur/verse-coq/blob/master/src/Verse/Artifact/ChaCha20.v
https://github.com/piyush-kurur/verse-coq/blob/master/src/Verse/Artifact/ChaCha20.v

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Abhishek Dang and Piyush P Kurur

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

3.1 Types and kinds
The type system of Verse comprises of the base types, like Word8,
Word16, Word32 and Word64, multiwords (SIMD vector types) and
arrays. Of these, only words and multiword types can potentially
be stored in machine registers. Array elements, on the other hand,
need to be addressed indirectly. In Verse, we distinguish these types
using a kind system, defined as the inductive type:
Inductive kind : Set := direct | memory

Types in Verse are defined as type families over kind. Following,
the correct by construction strategy, the word and multiword con-
structors generate only type direct whereas the Array constructor
generates type memory.

word : nat -> type direct
multiword : nat -> nat -> type direct
Array : nat

-> endian
-> type direct
-> type memory

Verse only allows arrays of word and multiword types and this is
enforced by restricting the type parameter for the Array constructor
to type direct. The nat parameter is the array bound. In addition,
since arrays are stored in memory, arrays also keep track of endi-
anness. The endianness becomes relevant when generating code
for indexing array elements.

3.2 Program variables
One of the important goals of Verse is to provide ways to write
generic assembly program fragments which can be ported and
reused across architectures. Arithmetic and bitwise instructions
which are the most relevant instructions for programming cryp-
tographic primitives are supported across architectures. However,
their register sets are often very different. We solve this problem
by making instructions parametric over the register set. In generic
Verse programs, variables are typed by an element of the type
universe VariableT.

VariableT = forall k : kind, type k -> Type

Any var : VariableT is a type and elements A B . . . : var k ty are
the actual program variables of type ty. Generic Verse programs are
therefore parameterised over VariableT. During code generation,
this generic variable type is instantiated by the type of machine
registers which is also part of the universe VariableT.

3.3 Operands and Instructions
Instructions in Verse are defined as an inductive type parameterised
over the universe VariableT of variable types.

instruction : VariableT -> Type

code = fun v : VariableT => list (instruction v)
: VariableT -> Type

A code fragment over the variable type v is just a list (instruction
v). Recall that the first stage of programming in Verse is to write a
generic program. In Verse, generic programs that use n variables of
types ty1, ..., tyn are functions of the type:

∀(var : VariableT), var ty1 → . . . → var tyn → code var.

The constructors of the instruction type expect operands cap-
tured by the arg inductive type. We now look at the inductive types
instruction and arg in some detail and explain how we use the
correct by construction strategy to achieve type checking of Verse
programs.

Operands to instructions can either be constants or program
variables, or an index into an array held inside a program variable.
This means that arguments are themselves parameterised by pro-
gram variables. We also want to ensure that a constant is not used
as the target of an assignment. This we achieve using the argKind

type.
Inductive argKind := lval | rval

arg : VariableT -> argKind
-> forall k : kind, type k
-> Type

Consider an instruction like x += y. The constructor associated
with this instruction is:

update2 : forall (v : VariableT) (ty : type direct),
binop ->
arg v lval direct ty ->
arg v rval direct ty ->
assignment v

This constructor, when used to encode the instruction x += y,
enforces the following:

• The argument x, is an lval and hence cannot be a constant
operand. This is achieved by making sure that the const

constructor for arg generates an arg of argKind rval.
• Both x and y are of the same direct type.

One other constructor of arg bears description. The constructor
index, that constructs an array indexing operand like A [- i -] in
programs has the following type.

index : forall (v : VariableT) (aK : argKind),
forall {b : nat}

{e : endian}{ty : type direct}
(x : v memory (Array b e ty)),

{ i : nat | i < b } -> arg aK direct ty

This encodes an array of size b being dereferenced at index i.
However, indices are constrained using the sigma type {i : nat | i
< b} and out of bounds access is ruled out.

The instruction type itself, for the most part, encapsulates as-
signment and update operations with arithmetic and binary opera-
tors. However, the MOVE instruction is not as typical. We defer it’s
description to the next subsection.

3.4 Endian safety
Cryptographic primitives like hashes and ciphers often work on
data by chunking them into blocks of fixed size and working one
block at a time. The primitives treat these blocks as arrays of a
particular word type and perform various transformations on them.
If this word type is multiple bytes long, one needs to specify the
byte order used to encode these words. For example, the SHA512
hashing algorithm treats its input as arrays of length 16 of Word64’s
encoded in big endian. Often, implementations that work on one
architecture fail miserably on another with a different byte order. In

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Verse: An EDSL for cryptographic primitives PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

the context of testing and implementing AES candidates [Gladman
1999] reports that incorrect handling of endianness was one of
the biggest sources of bugs. Verse has inbuilt support for handling
this issue; all one needs to do is to declare the array with the cor-
rect endianness. The code generation takes care of the appropriate
conversions.

In Verse, array types are parameterised by endianness apart from
their length and content type. We also allow the possibility of arrays
encoding their elements in host endianness to represent data for
which endianness either does not matter or is already taken care of
at a higher level.

endian : Type := bigE | littleE | hostE.
Array : nat

-> endian
-> type direct
-> type memory

Having distinguished arrays of different endianness at the type
level, Verse ensures proper endian conversions while indexing.
Consider a multi-byte type, say Word64, and program variables X

and A of types Word64 and Array 42 bigE Word64. On a big endian
machine, the instructions X ::== A[- 10 -] and A[- 10 -] ::== X will be
compiled into loads and stores. However on a little endian machine,
the code generator will compile X ::== A[- 10 -] to a load followed
by a byteswap on X whereas the assignment A[- 10 -] ::== X will
become a byteswap on X to get to big endian encoding, a store of X
into A[- 10 -], and finally a byteswap on X to restore the value back.

Verse also supports a more efficient MOVE X TO A[- 10 -] which
can be used instead of A[- 10 -] ::== X when it is known that the
value of X is no longer required. The semantics of Verse for the
MOVE instruction make the contents of X invalid for subsequent use,
effectively allowing the generated code to omit the final byte swap
and hence being slightly more efficient. In a sense, the MOVE instruc-
tion has the semantics of ownership transfer as in Rust. Programs
with MOVE instructions need to be checked for move violations, i.e.
an invalidated variable should not be used subsequently without
being reassigned first. We formalise a generic semantics for the
Verse language in Section 4 where errors which involve the use of
invalidated variables can be caught.

Apart from reducing endian conversion errors, the automatic
handling of endianness helps in portability as well. Consider two
different architectures both of which have comparable instruction
set but which differ in their endianness. It would have been a pity
if a generic routine needed to be rewritten just to take care of
endianness. Using verse we can write a single function and then
make it work on both the architecture.

3.5 Code generation
Before looking at the internals of code generation, we look at how
architectures are specified. An architecture is modularly built out
of the following:

• A machineVar : VariableT which corresponds to register and
stack variables in the architecture.

• Frame management routines to handle the calling conven-
tion.

• The actual translation of supported instructions to assembly
code.

Consider a generic program i.e. a Gallina function
prog : ∀(var : VariableT), var ty1 → . . . → var tyn → code var.

The architecture module is equipped to generate code from prog′ :=
prog machineVarwith some help from the user. It needs a separation
of the variables into parameters and locals, and explicit register
allocations for a subset of the local variables (the rest are spilled
onto the stack by the frame management routine). Provided with
this information the code generation proceeds as follows:

• Parameters are allocated according to the calling convention
of the architecture the code is being compiled down to.

• The local variables are allocated onto registers or the stack
according to specification.

• The fully instantiated generic program is now translated to
assembly code.

Recall that an architecture need not support all the instructions
or types that Verse provides. The above process can, therefore,
throw errors of UnsupportedType, UnsupportedInstruction, as also
UnavailableRegister for when a local allocation on a register con-
flicts with the calling convention.

Typically, assembly language fragments involve a lot of program
variables, and defining functions like prog directly is tedious. The
sectioning mechanism of Coq provides a convenient way of defin-
ing such functions and also packaging meta information like the
parameter, stack, and register lists conveniently. As demonstrated
in Section 2, these Coq features together with the helper tactics and
functions provided by Verse provide a coding environment that
hides most of these internals.

4 SEMANTICS
Following the strategy of [Chlipala 2013], we define an interpreter
for generic Verse programs in Coq. We first map types in Verse
to types in Coq. The simplest types in Verse are the word types
(Word8, Word16, . . .). A natural way to interpret them is to use bit-
vectors. Besides the word types, Verse supports multi-words and
arrays. Multi-words correspond to vectors of words and support
pointwise operations on their coordinates. Therefore, multiwords
are interpreted as vectors of their base word type. We capture this
meaning by a function.
Definition typeDenote : ∀ {k : kind}, type k → Type.

Apart from some special instructions like MOVE, instructions in
Verse look like X = Y op Z for some operator op. To interpret these
instructionswe need a Statewhichmaps variables to optional values.
States map uninitialised or clobbered variables to None.

Definition State :=∀ k (ty : type k), var ty→ option (typeDenote
ty).

Every instruction denotes a map from state to state.
Definition instructionDenote : instruction var → State →

State + {EnvError}.

Finally, code semantics is just a lift of instructionDenote to list

(instruction var).

4.1 Generalised semantics
The above interpretation is what we call the standard semantics for
Verse programs. We can generalise this to a much more abstract

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany Abhishek Dang and Piyush P Kurur

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

notion. Let us explore this idea by distilling out the essence of the
semantics.

• We define what the types of Verse mean via typeDenote.
• We then give ameaning to instructions via instructionDenote.

Notice that the function typeDenote is completely specified by
giving an interpretation for the word types. In other words, given
the function wordDenote : ∀ n : nat → Type, we can lift it to an
appropriate typeDenote. We do not need to stick to the standard
semantics and can choose wordDenote to be an arbitrary type family
on nat.

The definition of instructionDenote is also fully specified by
an interpretation of the operators, i.e. given a function opDenote

: ∀ n, operator → wordDenote n → wordDenote n → wordDenote n

(ignoring variance in arity for simplicity), we can lift it to an
instructionDenote. We can thus build a semantics for Verse from
any wordDenote and an opDenote over it.

Even the simplest case of such generalised semantics, where
wordDenote is the constant function fun ⇒ unit and opDenote op

is the function fun ⇒ tt, has a non-trivial application. This
semantics propagates validity instead of values of the underlying
variables, thus providing a means to check for invalid variable
use. Direct applications are detection of move violation or use of
uninitialised variables.

4.2 Semantics for bound checking
Cryptographic implementations often require arithmetic opera-
tions over big words, i.e. words with size larger than the word size
of the machine. Such a big word is split across multiple machine
registers. Given two such words, we need routines to multiply and
add them. A prerequisite to correctness of such routines is the
absence of overflows in the 64-bit arithmetic that the machine actu-
ally performs. For concreteness, consider an implementation of the
Poly1305 message authentication algorithm on a 64-bit machine. It
involves modular arithmetic over the prime modulus p = 2130 − 5.
Elements a mod p can be represented as 130-bit words. A com-
mon representation of these 130-bit words is as five 26-bit words
a0, . . . ,a4 stored in 64-bit registers. This seemingly wasteful repre-
sentation is carefully tailored to allow the multiplication routine to
go through on a 64-bit machine.

Consider a custom semantics that keeps track of the upper and
lower bounds instead of the actual values of variables, i.e. wordDenote
n is the type nat × nat, and opDenote op computes bounds for the
operational result from the bounds on its arguments. It is clear that
this semantics can, in particular, be used to check overflow errors.

Using bound semantics to check for overflow errors should target
the actual instructions that perform the arithmetic and not the entire
program. The tendency to refactor code fragments heavily in Verse
makes this style of verification natural. Coding within this style we
never found reasons to execute the bounded semantics on loops
which simplifies verification.

5 CHALLENGES AND FUTUREWORK
A drawback of the style of semantics that we discussed above is
that they are slow to execute; others have reported similar slow
down [Kennedy et al. 2013]. This was one of the primary reasons for
our move towards generic semantics. Empty semantics and bound

semantics are efficient enough for the applications we described
above. Nonetheless we would like to improve the performance of
standard semantics towards writing functional equivalence proofs.

Recall that Verse code is meant to be called via FFI from a high
level language like OCaml or Haskell. Writing tightly specified
primitives is moot without a facility to transfer restrictions on the
parameters to the calling function. Coq’s ability to extract code in
these calling languages means that it can act as a bridge between
the two worlds. In the future, we plan to implement a cryptographic
library which uses Coq to implement both the high-level features
(via extraction) as well as the low-level primitives (via Verse).

On the code generating front, Verse currently just pretty prints
the AST to the appropriate assembly language instructions. What
this means is that Verse’s code generation detracts from it being an
end-to-end verified compiler. Projects like CompCert [Leroy et al.
2012] on the other hand have a processor model, i.e. an inductive
type for assembly instructions and a semantics in Coq for the in-
structions, to prove correctness of their code generation phases.
However, this is not to be considered as a serious limitation as
Verse instructions translate more or less one to one to machine
instructions with no serious code transformations in between. Even
if routed through a processor model, there would be a stage where
the assembly language instructions, typically represented by induc-
tive types, would need to be pretty printed. Nonetheless, there are
some advantages of using a processor model. In particular, if one is
able to integrate the processor models of a well established project
like CompCert, we could gain additional trust in the process, not
to mention the additional benefit of being able to target multiple
targets (Verse currently only targets X86 64 and C).

There are other targets that are equally interesting. We could
target languages like Dafny [Leino 2010]much like the way we
targeted C. Finally, even our C backend could gain additional trust
by generating C code annotated with specifications that can be
automatically checked by systems like Frama-C [Cuoq et al. 2012].
We hope to pursue some of these ideas in future works.

6 RELATEDWORK
The primary motivation for Verse has been the qhasm project [Bar-
bosa et al. 2011; Bernstein 2007] which probably was the first at-
tempt to provide a low-level language specifically to program cryp-
tographic primitives. Qhasm reduces the burden of targeting multi-
ple architectures by providing C-like notation for instructions that
are common across architectures. However, unlike Verse, qhasm is
a set of string replacements and hence provides none of the high-
level features, for refactoring repetitive coding patterns. One often
needs a macro processor [Käsper and Schwabe 2009; Schwabe 2015]
to make up for these limitations. Finally, qhasm does not address
issues of type safety.

One could also approach the above problem by designing a full
programming language targeted specifically for cryptographic prim-
itives, i.e. a DSL instead of an EDSL. The CAO programming lan-
guage [Barbosa et al. 2011] was an early attempt. A more recent and
well maintained project is Cryptol [Pike et al. 2006] where one can
provide very high-level functional specifications to cryptographic
primitives. Cryptol, however, is designed to target dedicated hard-
ware implementations as opposed to software implementations.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Verse: An EDSL for cryptographic primitives PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

A very recent example of a DSL with scope much closer to Verse
is the Jasmin programming language [Almeida et al. 2017]. Unlike
Verse, it is a full-fledged programming language together with a
certified compiler written in Coq. Basic type safety is guaranteed by
the Jasmin compiler. Programs are then functionally embedded into
Dafny which checks for errors like out of bound array indexing. In
addition Jasmin programs can be annotated with user specifications
that get translated to Dafny annotations by the compiler. Dafny, in
turn, checks correctness by using the SMT solver Z3.
Our approach is definitely much more light-weight

• We do not have a parsing stage (Jasmin does not verify its
parser [Almeida et al. 2017, Section 5.3]) as we generate
the AST directly. Validating parsers is non-trivial and can
be a formalisation burden in an end-to-end certified com-
piler [Jourdan et al. 2012].

• Features like word level polymorphism is merely an idiom
for us, whereas it would be a major language feature for a
DSL (together with its type checking algorithms and their
correctness proofs).

• In addition, our focus on the bare essentials required for
implementing cryptographic primitives meant that we could
follow a correct by construction strategy even for things like
array bound checking.

Jasmin does support some high-level language features like gen-
uine loops as opposed to unrolled ones and conditional branches.
However, for speed and side-channel resistance, it is often the case
that real world implementations unroll loops and avoid conditional
branches. By focusing only on the inner loop of a cryptographic
primitive, Verse does not significantly compromise on features. In
fact, endian correctness is a feature that adds both to the correctness
and portability of cryptographic implementations, which, to the
best of our knowledge, is not supported by Jasmin.

The main objective of Verse is to be a vehicle for writing cryp-
tographic primitives, as much as possible, in a portable way. The
project Vale [Bond et al. 2017] addresses a different use case where
the goal is to add safety to an already existing code base of machine-
specific assembly language, for example, the code base of OpenSSL.
This they achieve by embedding an annotated version of the assem-
bly language into Dafny. The annotations carry safety conditions
that are then handled by a SAT solver.

Cryptographic primitives are not an end on their own and often
are just cogs in the larger scheme of secure cryptographic libraries
and applications. Another EDSL with a similar outlook is Low*
[Protzenko et al. 2017]. It is embedded into F* and, barring specifi-
cations, Low* code is close to the C code it compiles down to. We
look to take it a step further and provide a usable interface to target
assembly code generation directly. Also, being embedded in Coq
means that Verse can work well with other projects in Coq with
related goals.

• Verse can be the targets for other higher level compilers
or other efforts in Coq like [Erbsen et al. 2018] where they

develop efficient implementations by successive refinement.
In such cases, code is often generated by Coq functions and
the abstract syntax tree as an inductive type can help.

• As mentioned in the future works (Section 5), Verse can play
an important role in an end to end verified cryptographic li-
brary in Haskell where the higher-level function (in Haskell)
is extracted from its Coq implementation and low-level prim-
itives are encoded in Verse.

REFERENCES
J B Almeida, M Barbosa, G Barthe, A Blot, B Grégoire, V Laporte, T Oliveira, H Pacheco,

and B Schmidt. 2017. Jasmin: High-Assurance and High-Speed Cryptography. ,
1807–1823 pages. publications/ccs17.pdf

Manuel Barbosa, Andrew Moss, and Peter Schwabe. 2011. CAO and qhasm compiler
tools. Technical Report. Computer Aided Cryptography Engineering. http://www.
cspforum.eu/32_CACE_D1.3_CAO_and_qhasm_compiler_tools_Jan11.pdf

Daniel J Bernstein. 2007. Writing high speed software. https://cr.yp.to/qhasm.html
Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino, Jacob R. Lorch,

Bryan Parno, Ashay Rane, Srinath Setty, and Laure Thompson. 2017. Vale: Ver-
ifying High-Performance Cryptographic Assembly Code. In 26th USENIX Secu-
rity Symposium (USENIX Security 17). USENIX Association, Vancouver, BC, 917–
934. https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/bond

Adam Chlipala. 2013. Certified Programming with Dependent Types: A Pragmatic
Introduction to the Coq Proof Assistant. The MIT Press.

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,
and Boris Yakobowski. 2012. Frama-c. In International Conference on Software
Engineering and Formal Methods. Springer, 233–247.

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chli-
pala. 2018. Systematic Generation of Fast Elliptic Curve Cryptography Im-
plementations. https://people.csail.mit.edu/jgross/personal-website/papers/
2018-fiat-crypto-pldi-draft.pdf

Brian Gladman. 1999. Implementation experience with AES candidate algorithms. In
Proc. of Second AES Candidate Conference (AES2), March 1999.

Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. 2012. Validating LR(1)
Parsers. In Proceedings of the 21st European Conference on Programming Languages
and Systems (ESOP’12). Springer-Verlag, Berlin, Heidelberg, 397–416. https://doi.
org/10.1007/978-3-642-28869-2_20

Emilia Käsper and Peter Schwabe. 2009. Faster and Timing-Attack Resistant AES-GCM.
In Cryptographic Hardware and Embedded Systems - CHES 2009. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1–17.

Andrew Kennedy, Nick Benton, Jonas B. Jensen, and Pierre-Evariste Dagand. 2013.
Coq: The World’s Best Macro Assembler?. In Proceedings of the 15th Symposium on
Principles and Practice of Declarative Programming (PPDP ’13). ACM, New York, NY,
USA, 13–24. https://doi.org/10.1145/2505879.2505897

K Rustan M Leino. 2010. Dafny: An automatic program verifier for functional correct-
ness. In International Conference on Logic for Programming Artificial Intelligence
and Reasoning. Springer, 348–370.

Xavier Leroy et al. 2012. The CompCert verified compiler. Documentation and user’s
manual. INRIA Paris-Rocquencourt (2012).

Lee Pike, Mark Shields, and JohnMatthews. 2006. A Verifying Core for a Cryptographic
Language Compiler. In Proceedings of the Sixth International Workshop on the ACL2
Theorem Prover and Its Applications (ACL2 ’06). ACM, New York, NY, USA, 1–10.
https://doi.org/10.1145/1217975.1217977

Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro,
Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-Lavaud, Cătălin Hriţcu,
Karthikeyan Bhargavan, Cédric Fournet, et al. 2017. Verified low-level programming
embedded in F. Proceedings of the ACM on Programming Languages 1, ICFP (2017),
17.

Peter Schwabe. 2015. maq - a preprocessor for qhasm. https://cryptojedi.org/
programming/maq.shtml.

9

publications/ccs17.pdf
http://www.cspforum.eu/32_CACE_D1.3_CAO_and_qhasm_compiler_tools_Jan11.pdf
http://www.cspforum.eu/32_CACE_D1.3_CAO_and_qhasm_compiler_tools_Jan11.pdf
https://cr.yp.to/qhasm.html
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://people.csail.mit.edu/jgross/personal-website/papers/2018-fiat-crypto-pldi-draft.pdf
https://people.csail.mit.edu/jgross/personal-website/papers/2018-fiat-crypto-pldi-draft.pdf
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1145/2505879.2505897
https://doi.org/10.1145/1217975.1217977
https://cryptojedi.org/programming/maq.shtml
https://cryptojedi.org/programming/maq.shtml

	Abstract
	1 Introduction
	2 A tour of Verse through examples
	2.1 Code generation
	2.2 Iterative functions
	2.3 Sample iterator

	3 The design of Verse
	3.1 Types and kinds
	3.2 Program variables
	3.3 Operands and Instructions
	3.4 Endian safety
	3.5 Code generation

	4 Semantics
	4.1 Generalised semantics
	4.2 Semantics for bound checking

	5 Challenges and future work
	6 Related work
	References

