
How to Twist Pointers without Breaking Them

Satvik Chauhan ∗

Google
satvik@google.com

Piyush P. Kurur
Indian Institute Of Technology Kanpur

Kanpur, UP 208016, India
ppk@cse.iitk.ac.in

Brent A. Yorgey
Hendrix College

Conway, Arkansas, USA
yorgey@hendrix.edu

Abstract
Using the theory of monoids and monoid actions, we give a unified
framework that handles three common pointer manipulation tasks,
namely, data serialisation, deserialisation, and memory allocation.
Our main theoretical contribution is the formulation of the notion
of a twisted functor, a generalisation of the semi-direct product
construction for monoids. We show that semi-direct products and
twisted functors are particularly well suited as an abstraction for
many pointer manipulation tasks.

We describe the implementation of these abstractions in the
context of a cryptographic library for Haskell. Twisted functors
allow us to abstract all pointer arithmetic and size calculations into a
few lines of code, significantly reducing the opportunities for buffer
overflows.

Categories and Subject Descriptors D.1.1 [Programming tech-
niques]: Applicative (Functional) Programming

General Terms Languages, Security

Keywords monoid, monoid action, applicative functor, semi-direct
product, pointer

1. Introduction
Pointers as an abstraction for memory locations is a powerful idea
which is also, unfortunately, a fertile source of bugs. It is difficult to
catch illegal access to memory referenced by pointers, leading, for
example, to dreaded buffer overflows. The work that we describe
in this article grew out of the need to handle pointers carefully in
raaz (Chauhan and Kurur), a cryptographic network library written
in Haskell. An important goal in the design of this library is to
leverage the type safety of Haskell, whenever possible, to avoid
common bugs.

One might question the need for manual memory allocation or
direct pointer manipulation in a high-level language like Haskell.
Indeed, one should avoid such low level code for most programming
tasks. Cryptographic implementations, however, are different. The
low-level primitives are often implemented using foreign function
calls to C or even assembly. While performance is the primary mo-
tivation for including such low-level code, it is also a necessary

∗Work done when the author was at the Department of Computer Science
and Engineering, Indian Institute of Technology Kanpur

security measure, since otherwise compilers can introduce optimisa-
tions that enable various side-channel attacks.

Calling such C or assembly code via Haskell’s foreign function
interface requires marshalling data back and forth across the bound-
ary, explicitly allocating buffers and using pointer manipulation to
read and write data. Explicit memory allocation is also necessary
for storing sensitive data, as Haskell’s runtime can otherwise leak
information by moving data during garbage collection.

Our main contributions are the following:

• We explain the semi-direct product of monoids (Section 4.2)
and give several examples of their use (Section 4.3). Though
well-known in mathematical contexts, semi-direct products are
perhaps not as well-known as they ought to be among functional
programmers.

• We formalise twisted functors (Section 5), a generalisation of
semi-direct products. Despite seeming somewhat “obvious” in
hindsight, twisted functors are, to our knowledge, novel (a
discussion of related work can be found in Section 10).

• We use monoid actions, semi-direct products, and twisted func-
tors to develop a unified framework capable of abstracting three
common tasks using pointers, namely, data serialisation (Sec-
tions 2.2 and 7), deserialisation (Sections 2.3 and 7), and memory
allocation (Section 8).

The advantage of our interface is that the only fragment of code
that performs any pointer arithmetic is the instance declaration of
the type class Action given in Section 7 (about three lines of code).
Twisted functors automatically take care of all the offset and size
calculations required to perform common pointer manipulation tasks,
considerably shrinking the attack surface for our library.

More importantly, the twisted functor construction is mathemati-
cally well motivated (see Section 9 for a category theoretic motiva-
tion). We believe that twisted functors may have other applications
to programming as well.

2. Why the Twist?
The goal of this section is to introduce the basic patterns behind
the twisted functor construction, using pointer manipulation tasks
as examples. We begin by developing a Monoid instance to help
with data serialisation, which is built out of two other monoids—but
instead of the usual product construction, where the two monoids
are combined in parallel, we need a more complicated construction
where the two monoids interact, known as the semi-direct product
of monoids. We then turn to deserialisation and show how it follows
a similar pattern, but generalised to applicative functors instead of
monoids. This generalisation of a semi-direct product is what we
call a twisted functor.

2.1 Monoids and Applicative Functors
We first quickly review a few preliminary concepts. Recall that a
monoid (m; �; ") is a type m together with an associative operation
� which has an identity element ":

class Monoid m where
" :: m
(�) :: m→ m→ m

The requirements on " and (�) can be summarized by the following
laws:

identity: " � x = x
x � " = x

associativity: a � (b � c) = (a � b) � c

A commutative monoid additionally satisfies the law a � b = b � a
for all a and b. We will use the empty Commutative class to tag
monoids which are also commutative:

class Monoid m⇒ Commutative m

We assume a basic familiarity with monoids on the part of the
reader. We also assume a basic familiarity with applicative func-
tors (McBride and Paterson 2008), represented in Haskell via the
following standard type class:

class Functor f ⇒ Applicative f where
pure :: a→ f a
(〈∗〉) :: f (a→ b)→ f a→ f b

The laws for Applicative are less important at this point, and will
be discussed later in Section 3.

Although it may not be obvious from the above presentations, an
important point is that Applicative can be seen as a generalisation
of Monoid . We will have more to say about this in Section 3; for
now, a reader unfamiliar with this fact may like to use the following
examples to contemplate the relationship between Monoid and
Applicative.

2.2 Data Serialisation
As a starting point for discussing data serialisation, consider the
following type:

newtype WriteAction = WA (Pointer → IO ())

The idea is that a WriteAction takes a pointer as input and writes
some bytes to memory beginning at the referenced location. The
Pointer type represents a generic pointer which can point to any
particular byte in memory. In reality one would use a type such as
Ptr Word , but the specific implementation details are not important.

We can naturally make WriteAction into a monoid as follows:

instance Monoid WriteAction where
" = WA $ const (return ())
WA w1 �WA w2 = WA $ –ptr → w1 ptr >> w2 ptr

That is, the product w1 � w2 of two write actions performs the write
action w1 followed by the write action w2 on the same input pointer;
the identity element is the function that ignores the pointer and does
nothing. However, this is useless as an abstraction for serialisation,
since w2 overwrites bytes written by the previous action w1.

The main problem with WriteAction is that we have no way to
know how many bytes are written. To remedy this, consider the pair
type (WriteAction; Sum Int). An element (w ; n) of this type is
interpreted as a write action w tagged with the number of bytes that
will be written by w . We wrap Int inside Sum so it has an additive
monoid structure.

This pair type (WriteAction; Sum Int) automatically has a
Monoid instance which works componentwise, that is,

(w1; n1) � (w2; n2) = (w1 � w2; n1 + n2):

However, this is not much better. Even though the second component
is indeed doing its job of keeping track of the total number of bytes
written, as the first component we still have w1 � w2, where w2

overwrites bytes previously written by w1. We want a different
monoidal structure for (WriteAction; Sum Int); in particular, the
tracked sizes should affect the way the write actions are composed.

Intuitively, after running w1, we should first shift the input pointer
by n1 bytes before running w2, ensuring that w1 and w2 write their
bytes sequentially. That is, we want something like

(w1; n1) � (w2; n2) = (w1 � (n1 • w2); n1 + n2);

where

Sum n1 •WA w2 = WA $ –ptr → w2 (shiftPtr n1 ptr)

denotes the WriteAction which first shifts the input pointer by n1

bytes before running w2 (assuming a suitable function shiftPtr ::
Int → Pointer → Pointer). As we will show in more detail later
(Section 4.2), this does indeed define a valid monoid, known as the
semi-direct product of WriteAction and Sum Int.

2.3 Deserialisation
Consider the opposite problem of deserialising a Haskell value
from a buffer of bytes. We now build a rudimentary framework
which exposes an applicative functor based interface (McBride and
Paterson 2008; Swierstra and Duponcheel 1996), beginning with the
following type:

newtype ParseAction a = PA (Pointer → IO a)

First, we can make a straightforward Applicative instance for
ParseAction:

instance Applicative ParseAction where
pure = PA ◦ const ◦ return
PA pf 〈∗〉 PA px = PA $ –ptr → pf ptr 〈∗〉 px ptr

That is, pure just returns the value without reading any bytes, and
pf 〈∗〉 px on input ptr parses a function from ptr using pf and
applies it to the value parsed from ptr via px .

As an aside, we note that this is just the composition of the
Applicative instance for IO with the instance for ((→) Pointer);
we could get this Applicative instance for free if we defined

type ParseAction′ = Compose ((→) Pointer) IO;

but for our purposes the extra syntactic noise of dealing with
Compose would outweigh the benefit. Note also that defining

type ParseAction′ a = Pointer → IO a

does not work at all, since the standard Applicative instance for
((→) Pointer) cannot take the IO into account.

However, we now face a similar problem as in the previous
section: by default, pf 〈∗〉 px parses both the function and value
from the same location. Instead, we would like px to pick up parsing
where pf left off. Again, the underlying reason is that we do not
know how many bytes pf will read.

The solution is a construction analogous to that of the previous
section, but carried out for an applicative functor instead of a monoid.
We make a Parser type by pairing a ParseAction with a tag tracking
the number of bytes read:

data Parser a = P (ParseAction a) (Sum Int)

Again, there is a standard Applicative instance we could make
for Parser which just combines ParseAction and Sum Int values
separately, but we don’t want that instance. Instead, we use the
following instance:

instance Applicative Parser where
pure a = P (pure a) 0
P pf n1 〈∗〉 P px n2 = P (pf 〈∗〉 (n1 � px)) (n1 + n2)

Here n1�px is the operation, analogous to n•ptr from the previous
section, that first shifts the pointer by n1 bytes and then parses
using px . This construction is essentially what we call a twisted
functor; later, in Section 5.2, we will define twisted functors more
formally and show how the above Applicative instance can be built
automatically out of the Sum Int monoid and its action on the
ParseAction applicative functor.

The Applicative interface allows us to define complicated
parsers in terms of simpler ones much like other parser combi-
nator libraries such as attoparsec (O’Sullivan). For example,
consider parsing a tuple that consists of a 64-bit word followed by a
32-bit word. We can express such a parser in terms of the parsers
for its components as follows:

parseTuple = (;) 〈$〉 parse64 〈∗〉 parse32

Assuming parse64 and parse32 have been defined properly, this
parser will read a 64-bit word from whatever memory location it
is given, and then automatically read another 32-bit word from the
location immediately following.

3. Applicative Functors as Generalised Monoids
The close relationship of applicative functors and monoids is
somewhat obscured by the usual presentation of Applicative. The
Applicative laws are essentially geared towards their use as a
generalized zip and have nothing obviously in common with the
Monoid laws. Consider instead the following type class (McBride
and Paterson 2008, Section 7):

class Functor f ⇒ Monoidal f where
unit :: f ()
(?) :: f a→ f b → f (a; b)

Instances of Monoidal are required to satisfy the following laws,
which in essence say that the operator ? is associative with unit as
an identity:

identity: unit ? v ∼= v
u ? unit ∼= u

associativity: u ? (v ? w)∼= (u ? v) ? w

where∼= is the isomorphism of types generated by ((); a)∼=a∼=(a; ())
and (a; (b; c))∼= ((a; b); c).

Monoidal clearly forms a sort of “type-indexed” generalisation
of Monoid , where the monoid structure is reflected at the level of
types by the unit and product types (which themselves form a type-
level monoid structure up to isomorphism). The Monoidal laws are
also clear generalisations of the Monoid laws, with two laws for
left and right identity and one law for associativity.

In fact, the Monoidal type class can be seen as an alternative
presentation of Applicative. It is not hard to implement pure and
(〈∗〉) in terms of fmap, unit, and (?), and vice versa:

pure x = const x 〈$〉 unit
u 〈∗〉 v = uncurry ($) 〈$〉 (u ? v)

fmap f x = pure f 〈∗〉 x
unit = pure ()
u ? v = pure (;) 〈∗〉 u 〈∗〉 v

With these definitions, it is also true (though less obvious) that
the Monoidal and Functor laws together imply the Applicative
laws, and vice versa. See McBride and Paterson (2008, Section 7)
for details.

Both because of the more evident connection to Monoid , and
because of the more intuitive proof obligations, we will present the
rest of the paper in terms of the Monoidal class, but converting our
results to use Applicative is straightforward.

4. Monoid Actions and Semi-Direct Products
We first study the semi-direct product of two monoids, a well-known
algebraic construction which deserves to be better known among
functional programmers.

4.1 Monoid Actions
Recall the notion of a monoid action (see also Yorgey (2012)): given
a monoid m and an arbitrary type a, a left action1 of m on a is a
function (•) : m → a → a by which the elements of m behave
like transformations on the type a. Left actions are captured by
the type class Action (defined in Data:Monoid :Action from the
monoid-extras package (Yorgey)):

class Monoid m⇒ Action m a where
(•) :: m→ a→ a

Every instance of Action is required to satisfy the following
laws:

identity: " • a = a
composition: (m1 �m2) • a = m1 • (m2 • a)

A left action associates each element of m to a transformation
on a, that is, a function of type a → a. The laws specify how the
monoid structure of m is reflected in these transformations; for
example, the transformation associated to the product m1 �m2 must
be the composition of the respective transformations. Notice that the
type a→ a is itself a monoid, where the identity function id is the
unit " and the monoid operation is function composition. The laws
can thus be seen as requiring a left action to be a homomorphism
from the monoid m to the monoid a→ a. This is also brought out
much more clearly by equivalent point-free versions of the laws:

identity: (" •) = id
composition: ((m1 �m2)•) = (m1•) ◦ (m2•)
So far, we have been discussing monoid actions on arbitrary

types. To define semi-direct product, we need to look at monoids
acting on other monoids. In such situations we insist that the monoid
action of m on a preserve the monoid structure of a, as captured by
the following additional laws:

annihilation: m • " = "
distributivity: m • (a1 � a2) = (m • a1) � (m • a2)

We call an action satisfying these additional laws a distributive
action. Recall that when a monoid m acts on a type a, elements of
the type m can be seen as elements of the type a→ a. A distributive
action is then precisely one for which the associated functions a→ a
are themselves monoid homomorphisms. We capture this constraint
by the type class Distributive:

class (Action m a;Monoid a)⇒ Distributive m a

This class has no methods, but serves only to remind us of the
additional laws.

4.2 Semi-Direct Products
Let m be a monoid acting distributively on a type a, which itself is
a monoid. Then the semi-direct product a o m is structurally just
the product type (a;m), but under the monoid operation

(a1;m1) � (a2;m2) = (a1 � (m1 • a2);m1 �m2):

This is similar to the usual product of monoids (where (a1;m1) �
(a2;m2) simply yields (a1 �a2;m1 �m2)), but with a “twist” arising
from the action of m on a: the value m1 in the first pair acts on the
a2 from the second pair before it is combined with a1.

1 In this paper, by an action, we always mean a left action. It is possible to
define right actions analogously, but we do not need them.

Implementing semi-direct products is straightforward:

data (o) a m = a :o m

unSemi :: (a o m) → (a;m)
unSemi (a :o m) = (a;m)

instance Distributive m a⇒ Monoid (a o m) where
" = " :o "
(a1 :o m1) � (a2 :o m2) = (a1 � (m1 • a2)) :o (m1 �m2)

Semi-direct products of monoids are included in the monoid-extras
package on Hackage (as of version 0.4.1).

We can prove that a o m is indeed a monoid using the laws for a
distributive action.

Proof. First, we show that "a :o "m is both a left and right identity:

("a :o "m) � (a :o m)
= { defn }

("a � ("m • a) :o "m �m)
= { "a, "m are identites }

("m • a :o m)
= { identity law }

a :o m

(a :o m) � ("a :o "m)
= { defn }

a � (m • "a) :o m � "m
= { "m is identity }

a � (m • "a) :o m
= { annihilation law }

a � "a :o m
= { "a is identity }

a :o m

So far, we have used the identity and annihilation laws for the
distributive action of m on a. Next, we prove associativity of the
monoid operation, which relies on the other two laws, composition
and distributivity:

((a1 :o m1) � (a2 :o m2)) � (a3 :o m3)
= { defn }

(a1 � (m1 • a2) :o m1 �m2) � (a3 :o m3)
= { defn }

(a1 � (m1 • a2)) � ((m1 �m2) • a3) :o (m1 �m2) �m3

= { associativity of � }
a1 � ((m1 • a2) � ((m1 �m2) • a3)) :o m1 � (m2 �m3)

= { composition }
a1 � ((m1 • a2) � (m1 • (m2 • a3))) :o m1 � (m2 �m3)

= { distributivity }
a1 � (m1 • (a2 � (m2 • a3))) :o m1 � (m2 �m3)

= { defn }
(a1 :o m1) � (a2 � (m2 • a3) :o m2 �m3)

= { defn }
(a1 :o m1) � ((a2 :o m2) � (a3 :o m3))

So we see that a distributive action is precisely what is needed to
define the semi-direct product.

4.3 Examples
Semi-direct products arise naturally in many situations; here are a
few examples of semi-direct products in the context of functional
programming.

Pointer-based write actions Our first example is the monoid of
length-tagged write actions that we sketched in Section 2.2. Recall
that the operation for length-tagged write actions is

(w1; n1) � (w2; n2) = (w1 � (n1 • w2); n1 + n2);

where n1 • w2 is the write action which shifts the input pointer by
n1 before writing. Now that we have seen the formal definitions
of monoid actions and semi-direct products, we can see that this
is precisely the semi-direct product of WriteAction and Sum Int.
The exact implementation of the type Write in our library is slightly
more general; we describe it in detail in Section 7.

Computing GEN- and KILL-sets Consider a simple straight line
program which consists of a list of assignment instructions of the
form x := f (y1; :::; yk), where x and the yi are variables and f is a
built-in function. A standard computational task that is used during
data-flow analysis in a compiler is to compute, given a straight line
program p, the following sets:

GEN-set: The GEN-set is the set of variables that are used before
they are assigned in p. For example, for the program

y := g()

x := y + z

z := x − w
the GEN-set is {z; w}, both of which are referenced on the right-
hand side of an assignment before they appear on the left of an
assignment (in fact, w never appears on the left of an assignment
in this program).

KILL-set: The set of variables that are assigned in p. The KILL-set
for the above example program would be {x; y ; z}.

If the program p1; p2 is defined as the concatnation of the
programs p1 and p2, the question becomes how to compositionally
compute the GEN- and KILL-sets of p1; p2 from those of p1 and p2.
We show that semi-direct products can be used for this purpose.

Consider the monoid M of sets of variables, with union as the
monoid operation. M acts on itself via s • t = t \ s , that is, s • t
is the set t with the variables in s removed. Since the empty set
is the identity action, and removing s1 then removing s2 is the
same as removing s1 ∪ s2, this is a valid action. Moreover, it is
distributive: removing variables from the empty set has no effect,
and (t1 ∪ t2) \ s = (t1 \ s) ∪ (t2 \ s).

The KILL-set of p1; p2 is the set of variables assigned in p1; p2,
which is just the union of the variables assigned in p1 and p2. The
GEN-set of p1; p2, that is, variables used before being defined, is
the union of those used before being assigned in either p1 or p2,
except for variables in the GEN-set of p2 but in the KILL-set of p1:
such variables are now assigned before being used.

More formally, if (gi ; ki) is the ordered pair of GEN- and KILL-
sets for pi (i = 1; 2), then the GEN- and KILL-sets associated with
the program p1; p2 are given by:

(g; k) = (g1 ∪ (g2 \ k1); k1 ∪ k2)
= (g1 � (k1 • g2); k1 � k2)

From a computational perspective it is therefore natural to
consider the pair of GEN- and KILL-sets as elements of the semi-
direct productMoM — computing them for a straight line program,
which is just a list of instructions, amounts to computing them for
each instruction in the program followed by applying mconcat.

Tangent-matched path joins The diagrams library (Yates and
Yorgey 2015; Yorgey 2012) defines a notion of trails, which rep-
resent translation-invariant motions through space. That is, a trail
does not have a definite start and end location, but rather expresses
a particular movement relative to any given starting location, much

Figure 1. An example trail

Figure 2. The trail concatenated three times

Figure 3. The trail concatenated three times, with tangent matching

as a vector has a magnitude and direction but no concrete location.
Figure 1 shows an example trail; from any given starting point, the
trail will trace out the shape shown (from left to right).

Trails have a natural Monoid instance with concatenation as the
combining operation. For example, combining three copies of the
trail shown in Figure 1 produces Figure 2.

Note, however, that each trail has a definite orientation which
is unaffected by previous trails. For some applications, we might
prefer an alternative Monoid instance where concatenated trails are
rotated so the tangent vector at the end of each trail matches that
at the start of the next. For example, again combining three copies
of the trail shown above, but using this alternate Monoid instance,
would produce the trail shown in Figure 3.

In fact, this alternate monoid can be elegantly built as a semi-
direct product. The other monoid we need is that of angles under
addition; angles act on trails by rotation. We can verify that this is
a distributive action: rotating by an angle of 0 has no effect, and
rotating by two angles in succession is the same as rotating by their
sum; likewise, rotating the empty trail does nothing, and rotating a
concatenation of two trails gives the same result as rotating them
individually and then concatenating.

We therefore consider the semi-direct product Trail o Angle,
where we maintain the invariant that the angle tagged onto a Trail
represents the angle of its final tangent vector, that is, the difference
between the positive x-axis and its ending tangent vector (the
positive x-axis is a conventional yet arbitrary choice; any consistent
reference direction will do). In that case, the monoid operation for
Trail o Angle does something like what we want:

(t1 :o „1) � (t2 :o „2) = t1 � („1 • t2) :o „1 + „2

t1 � („1 • t2) concatenates t1 and t2, but not before rotating t2
to match the amount of rotation introduced by t1. We just need a
function to appropriately create a value of the semi-direct product
given a Trail : it measures the amount of rotation from the beginning
to the end of the trail, and also rotates the trail so its beginning
direction is along the positive x-axis. This normalization step is
necessary so that rotating the trails later will cause them to properly
align.

This monoid for trails is not yet included in the diagrams library,
but is planned for addition soon.

5. Twisted Functors
We now turn to the main theoretical contribution of the article,
namely twisted functors, a generalisation of semi-direct product.

5.1 Monoids Acting on Functors
We have seen that the semi-direct product is a way to construct
a monoid out of two monoids, with one acting on the other. The
twisted functor is the analogous notion where one of the monoids
(the one being acted upon) is generalised to a monoidal (applicative)
functor.

We first formalise the action of monoids on functors. Intuitively,
for a monoid m to act on the functor f , it should act in a uniform
way on all the types f a. Therefore, we would like to assert a
constraint something like forall a. Action m (f a). Unfor-
tunately, Haskell does not allow the use of universally quantified
constraints and hence we need a new type class.

class (Monoid m;Functor f)⇒ ActionF m f where
(�) :: m→ f a→ f a

An instance of ActionF should satisfy the following laws:

identity: " � fx = fx
composition: (a � b)� fx = a� (b � fx)
uniformity: m � fmap f u = fmap f (m � u)

The first two laws state that m acts on the left of each type f a.
The last law says that the action of m is in some sense uniform
across the functor. We say that the monoid m acts uniformly (on the
left) on the functor f . In fact, it is not strictly necessary to state the
uniformity law, since it is obtained as a free theorem (Wadler 1989)
from the type of (�). That is, by parametricity, every (total) function
with the type of (�) automatically satisfies the uniformity law. (For
a more detailed category theoretic explanation, see Section 9.) So
we will generally omit the word “uniformly” and just say that m
acts on the functor f .

When a monoid m acts on a type a which is itself a monoid, the
interesting actions were the ones which satisfied the distributivity
law. Something similar is required when we look at monoid actions
on monoidal functors. The obvious generalisation (which thankfully
turns out to be the right one) is the following:

annihilation: m � unit = unit
distributivity: m � (u ? v) = (m � u) ? (m � v)

It is worth stating what the equivalent laws would be for
Applicative:

stoicism: m � pure x = pure x
effectiveness: m � (f 〈∗〉 x) = (m � f) 〈∗〉 (m � x)

Given the definitions of Applicative in terms of Monoidal and vice
versa, and in the presence of the uniformity law, it is straightforward
to prove the equivalence of these pairs of laws, which we leave as
an exercise for the reader. If we think of the applicative functor as
encapsulating computations with side effects, then the stoicism law
prohibits the monoid from acting non-trivially on pure values, that is,

“pure values are stoic”. The effectiveness law says that the monoid
action captured by the operator � distributes across effects.

In any case, whether formulated in terms of Monoidal or
Applicative, we call this style of action a distributive action of
a monoid on a monoidal functor. This constraint is captured in
Haskell using the following type class:

class (Monoidal f ;ActionF m f)⇒ DistributiveF m f

Again, this class has no methods, but only reminds us of the
necessary laws.

5.1.1 Lifted Actions
An important class of distributive actions of a commutative monoid
on a functor arises by what we call a lifted action. These lifted
actions are precisely what we need when working with pointer
functions.

Recall that the type (→) a is a monoidal functor, with a
Monoidal instance defined by

instance Monoidal ((→) a) where
unit = const ()
f ? g = f M g

where f M g = –x → (f x ; g x) is the function which pairs the
results of f and g on the same argument (also written f &&& g in
more ASCII-ish Haskell).

An action of the commutative monoid m on the type a can be
lifted to the functor (→) a as defined below:

instance (Commutative m;Action m a)
⇒ ActionF m ((→) a) where

m � f = f ◦ (m•)
Notice that the function (m•) is an element of the type a→ a and
can be thought of as “shifting a value a by m”. The function m � f
therefore first shifts the input by m and then applies f .

Although the action of m on a need not be distributive (a is not
even necessarily a monoid), the lifted action of m on ((→) a) is:

instance (Commutative m;Action m a)
⇒ DistributiveF m ((→) a)

Proof. To prove that this is a valid distributive action, we must prove
the four distributive action laws (identity, composition, annihilation,
and distributivity).

• The identity law for the action of m on (→) a follows from the
same law for the action of m on a:

"� f = f ◦ ("•) = f ◦ id = f

• The annihilation law does not even depend on any other laws,
but follows directly from the definition of the Monoidal instance
for (→) a:

m � unit = const () ◦ (m•) = const ()

• The distributivity law follows just by unfolding definitions,
noting that function composition distributes over (M) from the
right.

m � (f ? g)
= { defn of (�) }

(f ? g) ◦ (m•)
= { defn of (?) }

(f M g) ◦ (m•)
= { (◦) distributes over (M) }

(f ◦ (m•)) M (g ◦ (m•))
= { defn of (�) and (?) }

(m � f) ? (m � g)

• The composition law turns out to be the most interesting, and
depends crucially on both the commutativity of m and the
composition law for the action of m on a.

(a � b)� f
= { defn of (�) }

f ◦ ((a � b)•)
= { commutativity }

f ◦ ((b � a)•)
= { composition, associativity of (◦) }

f ◦ (b•) ◦ (a•)
= { defn of (�) }

a� (f ◦ (b•))
= { defn of (�) }

a� (b � f)

Intuitively, the reason m needs to be commutative is that in
acting on a function f , it acts contravariantly on f ’s arguments, so
the “order of application” is switched. More precisely, lifting turns
a right action of m on a into a left action of m on (→) a and vice
versa; for commutative monoids, left and right actions are the same.

The lifted action defined above is by no means the only way to
lift an action to function types. For instance, when the monoid
is a group, an equally natural action is given by the equation
(m � f) x = f (m−1 • x). However, this is a very different action
and is not useful for us.

Lifting monoid actions can also be generalised to arbitrary
arrows (Hughes 1998); this generalisation will come in useful later.
Given the standard definition

newtype WrappedArrow () a b = WrapArrow (a b)

we can define a Monoidal instance and the generalised lifted action
as follows:

instance Arrow ()
⇒ Monoidal (WrappedArrow () a) where

unit = WrapArrow $ arr (const ())
WrapArrow f ?WrapArrow g = WrapArrow (f M g)

instance (Arrow ();Action m a)
⇒ ActionF m (WrappedArrow () a) where

m �WrapArrow f = WrapArrow $ f n arr (m•)
instance (Arrow ();Action m a)

⇒ DistributiveF m (WrappedArrow () a)

Notice that arr (m•) is just the “shift by m” function lifted to
an arrow, and (n) is arrow composition. If we ignore the newtype
wrappers, this is essentially the same as the definition of the lifted
action for function spaces. In fact, given the arrow laws arr id = id
and arr (f ◦ g) = arr f n arr g , we can simply take our proof for
the action of m on (→) a and generalise it to a proof for the above
instance with WrapArrow , by suitably wrapping things in calls to
arr , and wrapping and unwrapping the WrapArrow construnctor;
we must also note that (M) generalises to an operation on arbitrary
Arrow instances, which is required by the Arrow laws to satisfy
(f M g)n h = (f n h) M (g n h).

As a final note, we can also “demote” the Monoidal in-
stance for WrappedArrow () a to a Monoid instance for
WrappedArrow () a (); this will come in handy later.

instance Arrow ()⇒
Monoid (WrappedArrow () a ()) where

" = unit
f � g = (f ? g)o unit

5.2 Twisted Functors
Given the foregoing machinery, we can now concisely define twisted
functors. Given a monoid m with a distributive action on a functor
f , the twisted functor f õ m is defined as follows:

data (õ) f m a = f a :õ m

unTwist :: (f õ m) a→ (f a;m)
unTwist (fa :õ m) = (fa;m)

Just as with semi-direct products, a twisted functor structurally
consists of an f value paired with a monoidal tag. The Functor
instance for f õm maps over the first value of the pair while leaving
the tag alone:

instance Functor f ⇒ Functor (f õ m) where
fmap f (x :õ m) = (fmap f x :õ m)

In addition, if f is Monoidal and the action of m on f is distributive,
then f õ m is Monoidal :

instance DistributiveF m f ⇒ Monoidal (f õ m) where
unit = unit :õ "
(f1 :õ m1) ? (f2 :õ m2) = (f1 ? (m1 � f2)) :õ (m1 �m2)

Again, just as with semi-direct products, when combining two
tagged values, the first tag acts on the second value before the
values are combined.

Verifying that f õm satisfies the Functor and Monoidal laws is
now straightforward. For the Functor laws, fmap id has no effect
on f õ m values since

fmap id (x :õ m) = fmap id x :õ m = x :õ m;

the other Functor law then follows by parametricity (Kmett 2015).
The proof of the identity and associativity laws for the Monoidal
instance is literally the same as the proof of the Monoid instance
for semi-direct products (Section 4.2), with "a replaced by unit and
(•) replaced by (�).

6. Offset Monoids and Their Action on Pointers
In this section, we describe the monoid action that is relevant for
our pointer libraries, namely, the action of offsets on pointers. In the
examples in Section 2, we used the type Int for keeping track of
offsets measured in bytes. However, we want to be able to measure
pointer offsets in units other than bytes. For example, in the case
of memory allocation, we measure offsets in units corresponding
to the alignment restrictions of the machine. To avoid errors due
to confusion of units, offsets using different units should of course
have different types.

We first define a new type BYTES that captures lengths mea-
sured in bytes:

newtype BYTES = BYTES Int
deriving (Eq;Ord ;Num;Enum)

However, as mentioned before, it is often more natural to measure
length in other units, which will in general be some multiple of bytes.
We allow arbitrary types to be used as length measurements, and
simply require them to be instances of the type class LengthUnit,
which allows conversion to bytes when needed.

class (Num u;Enum u)⇒ LengthUnit u where
inBytes :: u → BYTES

instance LengthUnit BYTES where
inBytes = id

From now on, we say that a Haskell type u is a length unit if it is
an instance of the type class LengthUnit.

An example of a type safe length unit other than BYTES is the
ALIGN type. It measures lengths in multiples of the word size of
the machine, and is used to ensure alignment during allocation.

newtype ALIGN = ALIGN Int
deriving (Eq;Ord ;Num;Enum)

instance LengthUnit ALIGN where
inBytes (ALIGN x) = BYTES $ x ∗ alignment (⊥ :: Word)

The alignment function computes the alignment size for any
instance of the class Storable. As we will see, the above definition
essentially ensures that we always use word boundaries as alloca-
tion boundaries, since we only shift pointers by multiplies of the
alignment size for Word .

Now consider any length unit u which in particular is a numeric
type. Recall that the type Sum u captures the underlying additive
monoid of this numeric type. This monoid acts on pointers by
shifting them:

instance LengthUnit u ⇒ Action (Sum u) Pointer where
a • ptr = ptr ‘plusPtr ‘ offset
where BYTES offset = inBytes $ getSum a

This action also lifts to functions (or arrows) taking pointers as
arguments, and forms the core action used in abstracting pointer
manipulations.

7. Revisiting Serialisation and Deserialisation
In Section 2, we considered monoids relating to the problems of
byte-oriented serialization and deserialisation. We now revisit these
examples and show how they fit into the framework of semi-direct
products and twisted functors, as well as filling in some concrete
implementation details.

Recall that the basic interface for serialisation and deserialisation
is formed by IO actions which depend on a “current” memory
location, that is, functions of type (Pointer → IO a). These can be
captured by what are known as Kleisli arrows where the underlying
monad is IO.

newtype Kleisli m a b = Kleisli {runKleisli :: a→ m b}

A pointer arrow of type PointerArr is then essentially a function
of type Pointer → IO a—though slightly obscured by the Kleisli
and WrappedArrow newtypes, which allow us to reuse appropriate
instances. WriteAction (of kind ∗) and ParseAction (of kind ∗ →
∗) can then be defined as pointer arrows returning the unit type and
an arbitrary parameter type, respectively.

type PointerArr = WrappedArrow (Kleisli IO) Pointer

type WriteAction = PointerArr ()
type ParseAction = PointerArr

(It might be clearer to define ParseAction a = PointerArr a,
but type synonyms must be fully applied, and we will need to use
ParseAction :: ∗ → ∗ on its own, without a type argument.) Recall
that length units act on Pointer by shifting, as described in the
previous section. The lifted action of length units on (→) Pointer
(or WrappedArrow () Pointer), therefore, does exactly what we
described intuitively in Section 2, that is, u � f = f ◦ (u•) is the
function which first shifts the input Pointer by u before running the
action f . We can therefore define our serialisation and deserialisation
types as a semi-direct product and twisted functor, respectively.

type Write = WriteAction o Sum BYTES
type Parser = ParseAction õ Sum BYTES

Recall that as a wrapped arrow type returning (), WriteAction has
a “demoted” Monoid instance, whereas ParseAction is Monoidal .

An appropriate Monoid instance for Write and Monoidal (or
Applicative) instance for Parse then follow from our theory de-
veloped in Section 5. Indeed, the instances come for free, without
having to write any additional code.

To make use of our data serialisation and deserialisation frame-
work, all we need are some explicitly length tagged write and parse
actions. For example, we can define write and parse actions for any
Storable instance as follows:

byteSize :: Storable a⇒ a→ Sum BYTES
byteSize = Sum ◦ BYTES ◦ sizeOf

writeStorable :: Storable a⇒ a→Write
writeStorable a = action :o byteSize a

where
action = WrapArrow ◦ Kleisli $ pokeIt
pokeIt = flip poke a ◦ castPtr

parseStorable :: ∀a:Storable a⇒ Parser a
parseStorable = pa

where
action = WrapArrow ◦ Kleisli $ (peek ◦ castPtr)
pa = action :õ byteSize (⊥ :: a)

The peek and poke functions are exposed by the Storable type
class. More complicated write and parse actions can then be built
using the Applicative and Monoid interfaces.

7.1 Bounds Checking
Since write and parse actions always come tagged with their length,
we can actually compute the number of bytes written or read by
such an action as a pure function:

writeLength :: Write → BYTES
writeLength = getSum ◦ snd ◦ unSemi

parseLength :: Parser a→ BYTES
parseLength = getSum ◦ snd ◦ unTwist

This is useful for building safe interfaces which guarantee the
absence of buffer overflows. Consider the low-level create function
provided by the bytestring library:

create :: Int -- size
→ (Ptr Word8 → IO ()) -- filling action
→ IO ByteString

This function provides a way to initialize a ByteString by directly
accessing a pointer to the beginning of the allocated buffer, perform-
ing an arbitrary IO action to populate the buffer. Obviously this
function provides no particular safety guarantees. However, we can
wrap create in a safe interface by leveraging the known size of a
Write action:

toByteString :: Write → IO ByteString
toByteString w = create len fillIt

where BYTES len = writeLength w
fillIt = unsafeWrite w ◦ castPtr

unsafeWrite :: Write → Pointer → IO ()
unsafeWrite = runKleisli ◦ unwrapArrow ◦ fst ◦ unSemi

Buffer overflows are avoided by hiding unsafeWrite and provid-
ing only the high-level toByteString to the user. Similarly, we can
define a safe version of parsing, with a type like

parseByteString :: Parser a→ ByteString → IO (Maybe a)

7.2 Strengths and Limitations
Our simple interface for data serialisation and deserialisation has
several advantages.

• There is no explicit pointer arithmetic other than in the instance
for the action of Sum u on Pointer .

• Once low-level combinators like writeStorable are defined, any
compound serialisation or deserialisation combinator can be

built using the Applicative interface, without worrying about
pointer arithmetic or bounds calculations.

On the other hand, the interface does have some nontrivial
limitations, and is certainly not intended as a general-purpose
serialisation and parsing framework.

Haskell has high-performance serialisation libraries such as
blaze-builder (Van der Jeugt et al.) which allows serialising
data incrementally as a lazy byte string. A lazy byte string is a lazy
list of chunks each of which is a strict byte string. Typically the
generated lazy byte strings are written to a file or sent over a socket.
However, it is not desirable to generate a large list of small chunks
each of which will incur various overhead costs due to cache misses
or system calls. On the other hand, using a single large chunk defeats
the purpose of incremental generation. The blaze-builder library
achieves high performance by making sure that the chunks are of
reasonable size, typically the size of the L1 cache of the machine. It
performs incremental writes to buffers and spills them when their
size is just right.

The serialisation framework that we developed here is not
directly suitable for such an application. Nonetheless, we believe
that with some additional data structures, a blaze-builder-like
interface can be built on top. Instead of keeping partially filled
buffers, we can keep an element of the Write monoid to which we
append subsequent writes via the underlying monoid multiplication.
When the write we are accumulating is large enough, we generate a
chunk by using the toByteString function. We have not explored
this idea but believe such an interface could be competitive.

The limitations of our parsers, on the other hand, are much more
serious. In particular, our interface cannot replace an incremental
parsing interface like attoparsec (O’Sullivan). By construction,
our parsers must compute up front—that is, without executing any
parse actions—the total amount of data that will be read when the
action is executed. This is what makes the parseLength function
pure. This is a serious limitation that precludes Alternative or
Monad instances for our parsers (instances of either class must
be able to make choices based on intermediate results). For example,
consider the following encoding of Maybe Word : A value of
Nothing is encoded as a single word which is 0, and Just w is
encoded as two words where the first word is 1 and the second
word is w . It is rather easy to write a parser for such a format using
the Alternative or Monad interfaces, but it is not possible in our
framework.

Despite these limitations, many use cases that we encounter in
our cryptographic library can be easily be dealt with, since most
types of interest to us in the cryptographic setting are essentially
product types. For example, Sha1 is a 5-tuple of Word32 ’s. Writing
parsers for such types is straightforward using the Applicative
interface. It is also noteworthy that these very limitations also ensure
that deserialisation can be automatically parallelised, since actions
cannot depend on the results of previous actions, and the number of
bytes needed for each deserialisation subtask is known.

One can also easily parameterise parsers on the amount they
should consume, as in this example:

replicateA :: Applicative f ⇒ Int → f a→ f [a]
replicateA n f
| n 6 0 = pure []
| otherwise = (:) 〈$〉 f 〈∗〉 replicateA (n − 1) f

listOf :: Int → Parser a→ Parser [a]
listOf = replicateA

Such parsers can be used to parse types like Integer in certain
contexts, for example, when it is known that the integer is exacty
1024 bits long (think of parsing a 1024-bit RSA key).

8. An Interface for Secure Memory Allocation
Sensitive information like long term private keys can leak into
external memory devices when the operating system swaps the
pages which contain such data. Data that are written to such external
media can survive for a long time. Therefore, sensitive information
should be prevented from being swapped out of main memory.

Most operating systems allow a user level process to lock certain
parts of its memory from being swapped out. To protect sensitive
data from hitting long term memory, a cryptographic library can
lock the memory where it stores such data. When this data is
no longer needed, the application should wipe the memory clean
before unlocking and de-allocating it. Typical operating systems
usually place stringent limits on the amount of memory that a user
level process can lock, in order to prevent users from abusing such
provisions to consume system resources at the cost of others. Thus
locked memory must be treated as a precious resource and carefully
managed.

A naive way to perform memory locking in Haskell is to use
the pointer type ForeignPtr , which allows one to assign customised
finalisation routines. For a ForeignPtr that stores sensitive data,
one needs to lock it before use and associate a finalisation routine
that wipes the memory and unlocks it. However, such a naive
implementation does not work. In typical operating systems, locking
and unlocking happens at the virtual memory management level,
with the following consequences:

1. Memory locking is possible only at the page level and not at the
byte level.

2. Calls to locking and unlocking usually do not nest. For example,
in a POSIX system, a single munlock call on a page is enough
to unlock multiple calls of mlock on that page.

Now consider two distinct memory buffers b1 and b2 that contain
sensitive data. Although b1 and b2 do not overlap in memory, they
can often share a page. For example, b1 might end at the first
byte of a page and b2 might be the rest of the page. In such a
situations naively unlocking the memory referenced by b1 when it
is finalised will unlock b2, even though b2 is still in use and hence
not ready to be unlocked. Clearly this is undesirable and hence such
a simple finalisation-based solution is not enough to secure sensitive
information from being swapped out.

To avoid these problems, we could write a small memory
management subsystem within our library that allocates locked
pages of memory from the operating system and distributes them
among the foreign pointers that are used to store sensitive data.
As these foreign pointers are finalised, the library should mark the
appropriate memory locations as free and perform garbage collection
and compaction. However, such a solution is difficult to maintain
and requires knowing system parameters such as page sizes and
page boundaries, which we would like to avoid.

In this section, we look at a simpler approach to securing memory
which does not suffer from these complications. The important
components of our memory subsystem are as follows.

Memory elements: A memory element is an abstract type contain-
ing a memory buffer. Memory elements are instances of the type
class Memory (to be described shortly). Simple memory ele-
ments, like the type MemoryCell a which is capable of storing
a single value of type a, are provided by the library. In general,
however, a memory element could be a product of multiple such
primitive memory elements.
In our library, operations that need secure memory are encoded
as functions of type mem → IO a for some appropriate
memory element mem. All basic cryptographic operations such
as hashing or encryption have their own memory elements. Since
memory elements can be composed, a cryptographic operation

that needs “multiple memory elements” can just take as input
a single compound memory element (just as multi-argument
functions can be encoded as single-argument functions expecting
a tuple).

Allocation strategy: Each memory element has an associated al-
location strategy, which governs how much memory is needed
and how it is to be allocated among its sub-elements. For a mem-
ory element mem, the allocation strategy, captured by the type
Alloc mem, turns out to be a twisted functor. This applicative
interface comes in handy when we design allocation strategies
for compound memory elements: if mem1 and mem2 are two
memory elements with allocation strategies a1 :: Alloc mem1

and a2 ::Alloc mem2 respectively, the allocation strategy for the
product type (mem1;mem2) is simply given by a1 ? a2.

The Memory class by itself is very simple; instances of Memory
are types with an allocation strategy and a way to recover the
underlying pointer.

class Memory mem where
memoryAlloc :: Alloc mem -- allocation strategy
underlyingPtr :: mem→ Pointer -- recover the pointer

We now define the type Alloc mem, which represents an
allocation strategy for the memory element mem. We begin by
defining an allocation action which essentially is a function that
takes takes a pointer to a block of memory and carves out an element
of type mem.

type AllocAction = WrappedArrow (→) Pointer

Note AllocAction itself does not involve IO. An AllocAction
does not actually allocate memory via the operating system, but
simply builds an appropriate value (such as a buffer, memory cell,
etc.) given a pointer to an already-allocated block of memory.

However, the induced Applicative instance for AllocAction is
insufficient. We also need to keep track of the total memory allocated
so we do not allocate the same memory twice: when allocating two
memory elements, we can shift the pointer by the length of the first
element before allocating the second. As in the previous examples,
we can achieve this interface with a twisted functor.

type Alloc = AllocAction õ Sum ALIGN

allocSize :: Alloc m→ BYTES
allocSize = inBytes ◦ getSum ◦ snd ◦ unTwist

The only difference from Parser is that we measure offsets
in terms of the alignment boundaries of the architecture and not
bytes. Hence, we have used Sum ALIGN as the monoid instead of
Sum BYTES .

We now look at how actual memory allocations are done. Recall
that generic cryptographic operations are represented as functions of
type mem → IO a, where mem is an instance of Memory . Thus,
mem comes equipped with an allocation strategy memoryAlloc ::
Alloc mem which, in particular, tells us the size of the buffer that
must be allocated for the memory element. When given a block of
memory of the appropriate size, the allocation strategry also knows
how to wrap it to create the actual memory element. We can thus
define a high level combinator withSecureMemory which performs
memory allocation and then runs an action:

withSecureMemory :: Memory mem
⇒ (mem→ IO a)→ IO a

The use of the withSecureMemory combinator follows a stan-
dard design pattern in Haskell for dealing with resource allocation:
one first builds up an IO action which takes a resource as argument—
in this case the memory element— and then dispatches it using
withSecureMemory at the top level. withSecureMemory then al-
locates and locks the proper amount of memory, turns it into a mem

value, and passes it to the provided function. After the IO action has
finished executing, it makes sure that the allocated memory is wiped
clean—even if the IO action fails with an exception—and then un-
locks and deallocates it. We skip the details of the implementation,
as it involves low level memory allocation and locking which is not
very enlightening.

The interface we describe solves the problems we outlined be-
fore provided one sticks to the idiom of using withSecureMemory
only at the top level; there can only ever be one active call
to withSecureMemory , and hence there can never be overlap-
ping or nested locks and unlocks. If an algorithm has multiple
disjoint phases requiring secure memory, the implementor can
choose to implement the algorithm with multiple sequential calls
to withSecureMemory . However, one should not nest calls of
withSecureMemory . For an algorithm that requires several over-
lapping uses of secure memory, it is up to the implementor to
consolidate the necessary secure memory elements into a single
data structure which will be allocated by a single enclosing call to
withSecureMemory . Although this sounds tedious, in practice it is
straightforward due to the Applicative interface of Alloc . The im-
plementor simply needs to combine component allocators together
via the Applicative API, automatically resulting in an allocator
which knows the total size of the required secure memory block and
knows how to lay out the components within the allocated block.

There is only one small problem—the type system does not rule
out nested calls to withSecureMemory , which could destroy the
API’s guarantees (due to the problems with nested locks/unlocks,
as explained previously). Since we are explicitly not guarding
against malicious implementors, this is not inherently a security
flaw, but one might still worry about accidentally nesting calls to
withSecureMemory , especially as the code becomes more complex.
To rule this out, one could replace the inner IO with another, more
restricted monad which only allowed, say, doing certain pointer
manipulations.

withSecureMemory :: Memory mem
⇒ (mem→ PointerIO a)→ IO a

Critically, PointerIO should disallow running arbitrary IO actions,
and in particular it should disallow nested calls to withSecureMemory .
The current version of the library has not implemented such sani-
tised pointer manipulation monad but we may explore it in future
versions of the library.

We now give some examples to demonstrate how our interface
simplifies the definition of memory objects. Consider the following
primitive memory element type exposed by our library.

newtype MemoryCell a = MemoryCell {unCell :: Pointer }

For a type a that is an instance of Storable, MemoryCell a is
an instance of Memory , with the code shown below. Essentially,
it just wraps a Pointer to a block of allocated secure memory in
a MemoryCell , with a bit of extra complication due to the need to
compute a Word-aligned size big enough to hold the value of type
a:

instance Storable a⇒ Memory (MemoryCell a) where
memoryAlloc = makeCell
underlyingPtr = unCell

makeCell :: ∀b:Storable b ⇒ Alloc (MemoryCell b)
makeCell = WrapArrow MemoryCell

:õ atLeast (sizeOf (⊥ :: b))

atLeast :: Int → Sum ALIGN
atLeast x
| r > 0 = Sum ◦ ALIGN $ q + 1
| otherwise = Sum ◦ ALIGN $ q
where (q; r) = x ‘quotRem‘ alignment (⊥ :: Word)

This primitive definition of MemoryCell involves some fiddly
explicit bounds tagging. However, other memory elements that
require multiple such memory cells need not do all these bound
calculations, thanks to the Applicative instance of Alloc .

For example, consider the memory element that is required to
compute the SHA1 hash of a streaming input. The hashing algorithm
considers the data as a stream of blocks of 64 bytes each. It starts
with a default value for the hash, repeatedly reading in a new block
of data and computing the new hash from the hash of the blocks seen
so far. The memory element that we need for such a computation
involves memory cells to keep track of (1) the hash of the blocks
seen so far and (2) the total number of bytes processed, which is
used at the end for padding. We capture this using the following
memory type.

data SHA1
= SHA1 Word32 Word32 Word32 Word32 Word32

-- Storable SHA1 instance skipped
data Sha1Mem = Sha1Mem
{sha1Cell :: MemoryCell SHA1
; lengthCell :: MemoryCell Word64
}

The applicative interface for Alloc gives us a simple way to
define the Memory instance for Sha1Mem that does not require
any pointer arithmetic or bound calculations, since the instance itself
takes care of all the necessary bookkeeping.

instance Memory Sha1Mem where
memoryAlloc = Sha1Mem 〈$〉memoryAlloc

〈∗〉memoryAlloc
underlyingPtr = underlyingPtr ◦ sha1Cell

9. A Categorical Perspective on the Twisted
Functor Laws

For those readers familiar with category theory, we close by briefly
explaining the categorical viewpoint that motivates the particular
laws we have chosen.

Consider the action of a monoid M on another monoid N. The
distributivity law is required to show that the semi-direct product
N oM is indeed a monoid. It is well known that there is a category
theoretic interpretation for this law. In this section, we show that
both the uniformity law required for monoid acting on a functor and
the distributivity law for applicative functor have category theoretic
motivations as well.

For a monoid M, by defining an action on A our aim is to
think of elements of m as transformations of A. If A belongs
to a certain category C, we need to associate elements M to
endomorphisms of A in a natural way. In other words, an action of
M on A is a homomorphism from M to the monoid HomC (A;A)
of endomorphisms of A. Equivalently, for each element m in M,
we need to assign an endomorphism bm in Hom (A;A) such that
\m1:m2 = cm1 ◦cm2. When C is the category of sets all we need is
therefore the triviality and composition laws mentioned Section 5.
However, when we look at objects with additional structures, we
need additional constraints on bm. For example, when we consider
the monoid M acting on a monoid A, then each m in M should
define a homomorphism from A to itself. This condition is captured
by the identity and distributivity law for monoid acting on monoids.

It turns out that the uniformity laws that we had for monoid
actions on functors as well as the additional distributivity constraint
for applicative functors also have similar motivations. For two
categories C and D, consider the category of functors from C to
D with Hom (F; G) being natural transformations from the functor
F to the functor G. Therefore, a monoid action of M on a functor F

should assign, for each element m of M, a natural transformation bm
from the functor F to itself. As a result, for any two objects A and B
of C and any morphism f from A to B, bm ◦ F (f) = F (f) ◦ bm
as morphisms in HomD (F (A); F (B)). It is this condition that
becomes the uniformity law.

10. Related Work
Monoids are mathematical constructs that have seen a wide range of
applications in theory (for example, see Pin (1997) for connections
to automata theory and regular languages) and practice (for example,
Hinze and Paterson (2006)). Haskell libraries are full of Monoid
instances. In particular, using Monoid as an interface for data
serialisation is itself well known in the Haskell world, with two high
performance libraries—namely, blaze-builder (Van der Jeugt
et al.) and binary (Kolmodin) using monoids as their primary
interface. Monoid actions have been used extensively in the design
of the diagrams library, a DSL for describing vector graphics in
Haskell. The functional pearl by Yorgey (2012) discusses this and
other applications of monoids and monoid actions.

The semi-direct product is a well known construction in group
theory and occurs naturally in many contexts. For example, the
dihedral group Dn, which encodes the symmetries of a regular n-
gon, is a semi-direct product. It is therefore natural to look for
generalisation in the setting of monoidal categories. Instead of a
monoid m acting on another monoid n, for twisted functors we
generalised n to a monoidal functor. Other generalisations are also
possible. We particularly note a generalisation studied by Paterson
(2012, Section 4). This construction starts with a monoidal functor
F and a parameterised monoid G, that is, a functor G that comes
with a monoid multiplication Ga × Ga → Ga, with F acting
on G. He then obtains an applicative structure on the product
type Fa× Ga. Although superficially similar to our construction—
Paterson explicitly claims that his construction is a generalisation of
semi-direct products—the final structure obtained is quite different,
and the exact relation with our construction is unclear. In particular,
given a monoid m acting on a monoid a, we generalise a to a
monoidal functor, whereas Paterson generalises m to a monoidal
functor and a to a parameterised monoid.

11. Conclusions and Future Work
As a running example, we concentrated on the parts of the raaz
cryptographic library that deal with pointer arithmetic. Refactoring
all the pointer arithmetic into the few lines that implement the
monoid action gives us confidence that we have preempted a large
class of potential memory bugs in the resulting library. It illustrates
the power and flexibility of using a few core concepts like monoids
and applicative functors to structure code.

There is also an indirect benefit of our approach: the fact that
the type Write satisfies the monoid laws is simply a corollary of the
fact that semi-direct products are monoids. Similarly, the functors
Parser and Alloc satisfy applicative functors laws because they
are twisted functors. In general, in Haskell there is no way to
ensure that a purported instance of a type class indeed satisfies
the associated laws. These are merely social contracts that any
law-abiding library writer is supposed to honour to save the users
of her library from mysterious bugs. The users expect the library
writer to verify the laws at least informally using paper and pencil.
Constructing instance compositionally as in our approach saves
library writers from having to do such special case verification.

The wide applicability of monoid actions and twisted functors in
capturing (almost) all pointer manipulation in our library makes us

speculate that the constructions described here can be of independent
interest in other programming situations. It looks like this abstraction
can be used in any application that needs to keep track of some
sort of location in an abstract space; the example with diagrams
Trails hints at this sort of generality. We would like to explore
other applications of semi-direct products and twisted functors (for
example, we suspect that there are much deeper applications lurking
within the diagrams code base).

The fact that our buffer-oriented parsing framework must know
the exact number of bytes to be read up front is a major limitation.
Motivated by this example, we would like to explore whether
the twisted functor construction could somehow be extended to
Alternative in an appropriate way, in order to allow failure and
choice.

Acknowledgments
We thank the anonymous reviewers for their helpful comments and
suggestions.

References
S. Chauhan and P. P. Kurur. The raaz cryptographic library for Haskell.

https://hackage.haskell.org/package/raaz.
R. Hinze and R. Paterson. Finger trees: A simple general-purpose data

structure. J. Funct. Program., 16(2):197–217, Mar. 2006. ISSN 0956-
7968. doi: 10.1017/S0956796805005769. URL http://dx.doi.org/
10.1017/S0956796805005769.

J. Hughes. Generalising monads to arrows. Science of Computer Program-
ming, 37:67–111, 1998.

E. Kmett. The free theorem for fmap. https://www.schoolofhaskell.
com/user/edwardk/snippets/fmap, February 2015.

L. Kolmodin. The binary library for Haskell. https://hackage.haskell.
org/package/binary.

C. McBride and R. Paterson. Applicative programming with effects.
J. Funct. Program., 18(1):1–13, Jan. 2008. ISSN 0956-7968. doi:
10.1017/S0956796807006326. URL http://dx.doi.org/10.1017/
S0956796807006326.

B. O’Sullivan. The attoparsec library for Haskell. https://hackage.
haskell.org/package/attoparsec.

R. Paterson. Constructing Applicative Functors, pages 300–323. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. URL http://dx.doi.
org/10.1007/978-3-642-31113-0_15.

J.-E. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, Vol. 1, pages 679–746. Springer-Verlag
New York, Inc., New York, NY, USA, 1997. ISBN 3-540-60420-0. URL
http://dl.acm.org/citation.cfm?id=267846.267856.

S. D. Swierstra and L. Duponcheel. Deterministic, error-correcting combina-
tor parsers. In J. Launchbury, E. Meijer, and T. Sheard, editors, Advanced
Functional Programming, volume 1129 of LNCS-Tutorial, pages 184–
207. Springer-Verlag, 1996.

J. Van der Jeugt, S. Meier, and L. P. Smith. The blaze builder
library for Haskell. https://hackage.haskell.org/package/
blaze-builder.

P. Wadler. Theorems for free! In Proceedings of the fourth international
conference on Functional programming languages and computer archi-
tecture, pages 347–359. ACM, 1989.

R. Yates and B. A. Yorgey. Diagrams: a functional EDSL for vector graphics.
In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Functional Art, Music, Modelling and Design, pages 4–5. ACM, 2015.

B. Yorgey. The monoid-extras library for Haskell. https://hackage.
haskell.org/package/monoid-extras.

B. A. Yorgey. Monoids: Theme and variations (functional pearl). In
Proceedings of the 2012 Haskell Symposium, Haskell ’12, pages 105–116,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1574-6. doi:
10.1145/2364506.2364520. URL http://doi.acm.org/10.1145/
2364506.2364520.

https://hackage.haskell.org/package/raaz
http://dx.doi.org/10.1017/S0956796805005769
http://dx.doi.org/10.1017/S0956796805005769
https://www.schoolofhaskell.com/user/edwardk/snippets/fmap
https://www.schoolofhaskell.com/user/edwardk/snippets/fmap
https://hackage.haskell.org/package/binary
https://hackage.haskell.org/package/binary
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326
https://hackage.haskell.org/package/attoparsec
https://hackage.haskell.org/package/attoparsec
http://dx.doi.org/10.1007/978-3-642-31113-0_15
http://dx.doi.org/10.1007/978-3-642-31113-0_15
http://dl.acm.org/citation.cfm?id=267846.267856
https://hackage.haskell.org/package/blaze-builder
https://hackage.haskell.org/package/blaze-builder
https://hackage.haskell.org/package/monoid-extras
https://hackage.haskell.org/package/monoid-extras
http://doi.acm.org/10.1145/2364506.2364520
http://doi.acm.org/10.1145/2364506.2364520

	Introduction
	Why the Twist?
	Monoids and Applicative Functors
	Data Serialisation
	Deserialisation

	Applicative Functors as Generalised Monoids
	Monoid Actions and Semi-Direct Products
	Monoid Actions
	Semi-Direct Products
	Examples

	Twisted Functors
	Monoids Acting on Functors
	Lifted Actions

	Twisted Functors

	Offset Monoids and Their Action on Pointers
	Revisiting Serialisation and Deserialisation
	Bounds Checking
	Strengths and Limitations

	An Interface for Secure Memory Allocation
	A Categorical Perspective on the Twisted Functor Laws
	Related Work
	Conclusions and Future Work

