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Abstract—In this paper, we study cyclic stabiliser codes over
Fp of length dividing pt + 1 for some positive integer t. We
call these t-Frobenius codes or just Frobenius codes for short.
We give methods to construct them and show that they have
efficient decoding algorithms.

An important subclass of stabiliser codes are the linear
stabiliser codes. For linear Frobenius codes we have stronger
results: We completely characterise all linear Frobenius codes.
As a consequence, we show that for every integer n that divides
pt + 1 for an odd t, there are no linear cyclic codes of length
n. On the other hand for even t, we give an explicit method to
construct all of them. This gives us many explicit examples of
Frobenius code which include the well studied Laflamme code.

We show that the classical notion of BCH distance can be
generalised to all the Frobenius codes that we construct, including
the non-linear ones, and show that the algorithm of Berlekamp
can be generalised to correct quantum errors within the BCH
limit. This gives, for the first time, a family of codes that are
neither CSS nor linear for which efficient decoding algorithm
exits.

I. INTRODUCTION

Successful implementation of quantum computing requires
handling errors that occur while processing, storing and
communicating quantum information. Good quantum error
correcting codes are therefore a key technology in the eventual
building of quantum computing devices, besides, perhaps more
importantly, their theory provides some elegant mathematics.
An important class of codes are the stabiliser codes [1],
which not only captured the isolated examples constructed
earlier [2]–[5], but built a solid foundation for subsequent
works [6]–[8].

Constructing stabiliser codes require handling the slightly
non-standard symplectic inner product. The CSS construc-
tion [9], [10] gives one elegant and natural way, albeit with
some loss of generality, to handle this difficulty. For this,
one needs a self-dual classical code, or more generally two
classical codes one contained in the dual of the other, thereby
reusing the intuition built for classical codes. Another ap-
proach to the problem, again with some loss of generality, is to
look at linear stabiliser codes [6]. Linear stabiliser codes can
also be characterised as linear classical codes over a quadratic
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extension of the base field [6, Theorem 3] [11, Lemma 18]
which are Hermitian self-dual.

In this article, we study mainly cyclic stabiliser codes.
Cyclic codes, being well studied classically, have recently been
studied in detail [6], [11]–[13], mostly from the perspective of
either self dual codes or Hermitian self dual codes. We explore
another approach to simplify the symplectic condition, namely,
we restrict our attention to cyclic codes of length dividing
pt + 1 over Fp.

Our contribution: In this article, we focus on cyclic sta-
biliser codes over the field Fp whose lengths divide pt + 1,
for some positive integer t. We call such codes t-Frobenius
codes, or just Frobenius codes, because of the key role played
by the Frobenius automorphism. Restricting to such lengths,
while constraining, is not that bad, as there is a healthy, i.e.
almost linear, density of such lengths (see [14]). In bargain,
we get a simpler formulation of the isotropy condition, which
helps in the analysis of these codes considerably. Furthermore,
this simplicity of the isotropic condition allows us to extend
the notion of BCH distance for these codes and give efficient
decoding algorithms. Since none of the codes that we construct
are CSS — all our codes are uniquely cyclic (See Section III
for a definition) and by Proposition III.5 are not CSS — and
some of them are non-linear, this gives a family of codes for
which efficient decoding algorithms were not known before.

We study the subfamily of linear Frobenius codes in detail
and completely characterise them (Theorems IV.4 and IV.6).
This has two consequences, one negative and another positive.
Firstly, over Fp, we show that there are no t-Frobenius linear
codes when t is odd (Corollary IV.5). This is a somewhat
serious limitation of linear cyclic codes as the density of such
lengths n seems to be almost linear (see [14] for details).
Moreover, this impossibility is purely Galois theoretic unlike
other known restriction that arise from sphere packing bounds
or linear programming bounds.

On the positive side, the characterisation of linear Frobenius
codes gives us ways to explicitly construct examples of
linear Frobenius codes of lengths p2t + 1. Again, since the
density of such lengths are also healthy, this technique give
sizable number of explicit examples including the well studied
Laflamme code. Table I give such examples for p = 2 and
lengths less than 100.



II. PRELIMINARIES

We give a brief overview of the notation used in this paper.
For a prime power q = pk, Fq denotes the unique finite field of
cardinality q. The product Fnp is a vector space over the finite
field Fp and an element a = (a1, . . . , an)

T in it is thought
of as a column vectors. Fix a p-dimensional Hilbert space
H. An orthonormal basis for H is of cardinality p. Fix one
such basis and denote it by {|a〉|a ∈ Fp}. As is standard
in quantum computing, for an element a = (a1, . . . , an)

T

in Fnp , |a〉 denotes the tensor product |a1〉 ⊗ . . . ⊗ |an〉. The
set {|a〉|a ∈ Fnp} forms a basis for the n-fold tensor product
H⊗n

. A quantum code over Fp of length n is a subspace of the
tensor product H⊗n

. There is by now a significant literature
on quantum codes [1], [6], [15].

Let ζ denote the primitive p-th root of unity exp 2πι
p . For

a and b in Fnp , define the operators Ua and Vb on H⊗n

as
Ua|x〉 = |x + a〉 and Vb|x〉 = ζb

Tx|x〉 respectively. The
operator Ua can be thought of as a position error and Vb as
a phase error. In a quantum channel, both position errors and
phase errors can occur simultaneously. These are captured by
the Weyl operators UaVb.

For elements a and b of the vector space Fnp the joint weight
w (a,b) is the number of positions i such that at least one of
ai or bi is not zero. The weight of the Weyl operator UaVb
is the joint weight w (a,b). Occurrence of a quantum error at
t positions is modelled as the channel applying an unknown
Weyl operator UaVb of weight t on the transmitted message.

An important subclass of quantum codes are stabiliser
codes [1]. These are closely connected to isotropic subsets. For
any two vectors u = (a,b) and v = (c,d) of Fnp ×Fnp , define
the symplectic inner product 〈u,v〉 as the scalar aTd− bTc
of Fp. A subset S of F2n

p is called totally isotropic [6], or just
isotropic, if for any two elements u and v of S, 〈u,v〉 = 0.

Isotropic subspaces of F2n
p are closely related to stabiliser

codes. Calderbank et al [6], [16] were the first to study
this relation when the underlying field is F2. Later, this was
generalised to arbitrary fields [7], [8]. We summaries these
results in a form convenient for our purposes.

Theorem II.1 ( [7], [8], [16]). Let S be a isotropic sub-
space of F2n

p for some positive integer n. Let ω be either
the primitive p-th root of unity exp 2πι

p or
√
−1, depending

on whether p is odd or even respectively. Then, the subset
S = {ωaTbUaVb|(a,b) ∈ S} of unitary operators forms an
Abelian group. Furthermore, the set of vectors invariant under
the operators in S forms a quantum stabiliser code and the
operator P = 1

#S
∑
U∈S U is the projection to it.

Let S be a subspace of F2n
p . By the centraliser of S, denoted

by S, we mean the subspace of all u in F2n
p , such that 〈u,v〉 =

0, for all v in S. We have the following theorem on the error
correcting properties of the stabiliser codes.

Theorem II.2 ( [7], [8], [16]). Let S be a isotropic subspace
of F2n

p and let C be the associated stabiliser code. Then the
dimension of the subspace S is at most n. If S has dimension

n−k for some k > 0 then the centraliser S, as a vector space
over Fp, is of dimension n + k and the code C, as a Hilbert
space, is of dimension pk. Furthermore, if the minimum weight
min{w (u) |u ∈ S\S} is d then C can detect up to d−1 errors
and correct up to bd−12 c errors.

Let C be a stabiliser code associated with an n− k dimen-
sional totally isotropic subspace S of F2n

p . By the stabiliser
dimension of C we mean the integer k. Similarly, we call
the weight min{w (u) |u ∈ S \ S} the distance of C. In
this context, recall that the stabiliser code associated to the
isotropic set S is called δ-pure, if the minimum of the joint
weights of non-zero elements of the centraliser S is δ. It
follows from Theorem II.2 that a δ-pure code is of distance
at least δ. A stabiliser code over Fp of length n, stabiliser
dimension k and distance δ is called an [[n, k, δ]]p code.

III. QUANTUM CYCLIC CODES

In this section we define quantum cyclic codes and study
some of its properties. Fix a prime p and a positive integer
n coprime to p for the rest of the section. Let N denote
the right shift operator over Fnp , i.e. the operator that maps
u = (u1, . . . , un) to (un, u1, . . . , un−1). Consider the unitary
operator N defined as N|u〉 = |Nu〉. Recall that a classical
code over Fp is cyclic if for all code words u, its right shift
Nu is also a code word. Motivated by this definition, we have
the following definition for quantum cyclic codes.

Definition III.1. A quantum code C is cyclic if for any vector
|ψ〉 in C, the vector N|ψ〉 is in C.

Let S be a subspace of Fnp × Fnp . We say that S is
simultaneously cyclic if for all (a,b) in S, (Na, Nb) is also
in S. Stabiliser codes with simultaneously cyclic isotropic
sets were first studied by Calderbank et al [6, Section 5]
and was taken as the definition of cyclic codes in subsequent
works [11]–[13]. In this context, we show that for stabiliser
codes, simultaneous cyclicity and our definition of cyclicity
coincide.

Proposition III.2. An isotropic subset of Fnp ×Fnp is simulta-
neously cyclic if and only if the associated stabiliser code is
cyclic.

Let R denote the cyclotomic ring Fp[X]/Xn − 1 of poly-
nomials modulo Xn − 1. When dealing with cyclic codes, it
is often convenient to think of vectors of Fnp as polynomials
in R by identifying the vector a = (a0, . . . , an−1) with the
polynomials a(X) = a0 + . . .+ an−1X

n−1. We use the bold
face Latin letter, for example a, b etc, to denote vectors and the
corresponding plain face letter, a(X), b(X) respectively, for
the associated polynomial. Recall that, classical cyclic codes
are ideals of this ring R. In the ring R, the polynomial X has
a multiplicative inverse namely Xn−1. Often, we write X−1 to
denote this inverse. Notice that for any two vectors a and b in
Fnp , if a(X) and b(X) denote the corresponding polynomials
in R, then the coefficient of Xk in the product a(X)b(X−1)
mod Xn−1 is the inner product aTNkb, where N is the right
shift operator. An immediate consequence is the following.



Proposition III.3. Let S be a simultaneously cyclic subset of
Fnp×Fnp . Then S is isotropic if and only if for any two elements
u = (a,b) and v = (c,d), the corresponding polynomials
satisfy the condition

b(X)c(X−1)− a(X)d(X−1) = 0 mod Xn − 1.

Let S be a simultaneously cyclic subspace of Fnp × Fnp .
Define A and B to be the projections of S onto the first and
last n coordinates respectively, i.e. A = {a|(a,b) ∈ S} and
B = {b|(a,b) ∈ S}. Since S is simultaneously cyclic, A and
B are cyclic subspaces of Fnp and hence are ideals of the ring
R. Let g(X) be the factor of Xn − 1 that generates A. Since
g(X) is an element of A, there exists a polynomial f(X) in R
such that (g, f) ∈ S. If this f is unique then we say that S is
uniquely cyclic and call the pair (g(X), f(X)) of polynomials,
a generating pair for S. We have the following proposition.

Proposition III.4. A simultaneously cyclic subspace S of Fnp×
Fnp is uniquely cyclic if and only if for every element (0,a) in
S, a = 0. If S is uniquely cyclic generated by the pair (g, f),
then every element of S is of the form (ag, af) for some a(X)
in Fp[X]/Xn − 1.

For a CSS code, the underlying isotropic set S is a product
C1 × C2 of two n-length classical codes over Fp In partic-
ular, elements (a, 0) and (0,b) for a and b in C1 and C2

respectively belong to S. Therefore, we have the following
proposition as a consequences of Proposition III.4.

Proposition III.5. Any uniquely cyclic stabiliser code is not
CSS unless it is of distance 1.

For uniquely cyclic codes the isotropy condition in Propo-
sition III.3 can be simplified as follows.

Proposition III.6. Let S be a simultaneously cyclic sub-
space of Fnp × Fnp with generating pair (g, f). Then S is
isotropic if and only if g(X)f(X−1) = g(X−1)f(X) modulo
Xn − 1. Moreover, any pair (a, b) belongs to S if and only if
g(X)b(X−1) = a(X−1)f(X) modulo Xn − 1.

Consider a quadratic extension Fp2 = Fp(η) of Fp obtained
by adjoining a root η of some quadratic irreducible polynomial
over Fp. Identify the product Fnp×Fnp with the the vector space
Fnp2 by mapping a pair of vectors (a,b) to the vector a+ ηb.
Similarly for the cyclotomic ring R, identify the product ring
R × R with the cyclotomic ring R(η) = Fp2 [X]/Xn − 1.
Let S be any isotropic subspace of Fnp × Fnp . The associated
stabiliser code CS is said to be linear [6] if S under the above
identification is a subspace of Fnp2 . Isotropic subspaces of
Fnp×Fnp associated to linear stabiliser codes are classical cyclic
codes of length n over Fp(η). Thus the following proposition
follows.

Proposition III.7. Let S be an isotropic simultaneously cyclic
subspace of the product Fnp × Fnp . The associated stabiliser
code CS is linear if and only if S is an ideal of the cyclotomic
ring Fp2 [X]/Xn − 1. Furthermore, if CS is linear then the
centraliser S is also an ideal of Fp2 [X]/Xn − 1.

It follows from the theory of classical codes that both S
and S are ideals generated by factors of Xn − 1 over Fp2 . In
this context, we make the following definition.

Definition III.8 (BCH distance). Let g(X) be a factor of the
polynomial Xn−1 over the field Fq , n coprime to q. The BCH
distance of the polynomial g(X) is the largest integer d such
that the consecutive distinct powers β`,β`+1, . . . , β`+d−2 are
roots of g, for some primitive n-th root β.

Recall that, the distance of a classical cyclic code is at least
the BCH distance of its generating polynomial. In the setting
of stabiliser codes, the distance is related to the minimum
joint weight of elements of S (Theorem II.2). Motivated by
this analogy, we define the BCH distance of linear stabiliser
codes as follows.

Definition III.9. Let S be a isotropic subset of Fnp × Fnp
associated to a linear cyclic stabiliser code C. The BCH
distance of C is the BCH distance of the generator polynomial
of the centraliser S.

We have the following theorem which follows from Theo-
rem II.2.

Theorem III.10. Let C is be any linear cyclic stabiliser code
of BCH distance d. Then it is d-pure and hence has distance
at least d.

IV. LINEAR CYCLIC CODES OF LENGTH DIVIDING pt + 1

In this section, we study linear cyclic stabiliser codes over
Fp whose length divides pt + 1. The main motivation to
restrict our attention to lengths of this form is captured in
the following proposition.

Proposition IV.1. If the integer n divides pt+1, for some posi-
tive integer t then X−1 in the cyclotomic ring Fp[X]/Xpt+1−
1 is Xpt . Therefore, for every polynomial g(X) over any
extension of Fp we have g(X−1) is g(X)p

t

.

The above-mentioned property simplifies the isotropy condi-
tion for polynomials considerably and allows us to completely
characterise all linear cyclic codes of such lengths.

Let Fp(η)/Fp be an extension of degree d. When dealing
with cyclic quantum codes of length n, we use R to denote
the cyclotomic ring Fp[X]/Xn − 1. The extension ring R(η)
is then the cyclotomic ring Fp(η)[X]/Xn − 1. Linear codes
are associated with quadratic extension and identification of
the pair of vectors (a,b) with a + ηb maps its isotropic set
to an ideal of R(η).

Lemma IV.2. Let S be the isotropic ideal associated to a
linear cyclic stabiliser code over Fp of length dividing pt+1.
Then S is uniquely cyclic.

Consider the Frobenius automorphism σ on a degree d
extension Fp(η)/Fp which maps any element α in Fp(η)
to αp. This can be naturally extended to polynomials over
Fp(η) and therefore on R(η) as follows: For a polynomial
a(X) = a0 + . . . + anX

n where ai are in Fp(η), σ(a) is



defined as σ(a0)+ . . .+σ(an)Xn. We call this the Frobenius
involution.

Constructing linear cyclic codes correspond to constructing
generators for the associated isotropic ideal. We make use
of the following Galois theoretic lemma to characterise such
generators.

Lemma IV.3. Let the integer n divide pt+1 for some positive
integer t.

1) Any irreducible factor of Xn−1 over Fp other than the
factors X − 1 or X + 1 has even degree.

2) Let f(X) be any irreducible factor of Xn − 1 over Fp
whose degree is divisible by d for some positive integer
d. Over the extension field Fpd = Fp(η), f(X) splits into
d irreducible factors f0(X, η), . . . , fd−1(X, η) such that
fi = σi(f0).

Consider the extension field F(η) = Fp2 and let S be
any ideal of R(η). The following theorem gives a necessary
condition for it to be isotropic and hence give a linear cyclic
code.

Theorem IV.4. Let Fp(η) be a quadratic extension of Fp. Let
n divide pt+1 and S be an isotropic ideal of Fp(η)[X]/Xn−
1. Then t is even and the ideal S is generated by the product
polynomial g(X) · h(X, η) where g(X) and h(X, η) are two
coprime factors of Xn − 1 satisfying the following condition.

1) g(X) is any factor of Xn − 1 over Fp which contains
both X − 1 and X + 1 as factors.

2) h(X, η) is any factor of Xn−1
g over Fp2 , such that

for any irreducible factor r(X, η) of Xn−1
g over Fp2 ,

r(X, η) divides h(X, η) if and only if σ(r) = r(X, η′)
does not.

A corollary of the above theorem is the following impossi-
bility result.

Corollary IV.5. Let n be any integer that divides pt+1, where
t is odd. Then there does not exist any linear cyclic stabiliser
codes of length n over Fp.

For example, 9, 11, 19, 27, 33, 43, 57, 59, 67, 81, 83, 99 are
the numbers less then hundred that divide 2t + 1 for some
odd t. Hence there is no binary linear cyclic code of such
lengths.

The next theorem shows that the conditions in Theorem IV.4
are also sufficient to construct isotropic ideals of R(η). This
gives us a way of constructing linear cyclic stabiliser of
length dividing p2m + 1. This theorem directly follows from
a more generalised construction given in Theorem V.1 and
Theorem V.2.

Theorem IV.6. Let n divide p2m+1 and Fp(η) be a quadratic
extension of Fp. Let g(X) and h(X, η) be factors of Xn − 1
satisfying the properties 1 and 2 of Theorem IV.4. Then the
ideal S of Fp(η)[X]/Xn− 1 generated by the product g ·h is
isotropic as a subset of Fnp ×Fnp and the associated stabiliser
code is linear and cyclic.

In the rest of the article, we refer to cyclic stabiliser codes
whose length divide pt + 1 as t-Frobenius codes. For linear
2m-Frobenius codes, we call the factorisation g(X) · h(X, η)
characterised above as the canonical factorisation associated
to the code.

Theorem IV.7. Let C be a linear 2m-Frobenius code over
Fp with canonical factorisation g ·h. The stabiliser dimension
of the code C is deg(g). The centraliser S of S is the ideal
generated by h(X, η) and hence the BCH distance of C is
BCH distance of h.

Again the proof follows from the more general theorem V.3
and V.2.

V. GENERALISATION TO NONLINEAR CODES

We have already shown that if n divides pt+1 for some odd
integer t then no linear code of length n exists. In this section
we show how to construct nonlinear codes of such length. The
construction is a generalisation of Theorem IV.6. The major
difference is that the extension of Fp is no longer restricted to
be quadratic.

Theorem V.1. Let n divide pdm + 1 and Fp(η) be a degree
d extension of Fp. Let g(X) and h(X, η) be co-prime factors
of Xn − 1 satisfying the following properties.

1) g(X) is any factor of Xn − 1 over Fp which contains
all the the irreducible factor of Xn − 1 over Fp whose
degree is not divisible by d.

2) h(X, η) is any factor of Xn−1
g over Fp(η) such that

for any irreducible factor r(X, η) of Xn−1
g over Fp(η),

r(X, η) divides h(X, η) if and only if none of the factors
σ(r), . . . , σd−1(r) divide h i.e. X

n−1
g(X) =

∏d−1
i=0 σ

i(h).
Fix any nonzero α in Fp and let a(X, η) be the polynomial,
uniquely defined by Chinese remaindering, as follows.

a =

{
1 mod g
σi(αη) mod σi(h) for all 0 ≤ i < d

Then a(X, η) is a polynomial in Fp[X] and the uniquely cyclic
subspace generated by (g, ag) is isotropic.

The following theorem shows that the linear codes obtained
from Theorem IV.6 are indeed a subclass of the codes gener-
ated from Theorem V.1

Theorem V.2. Let c(X) = X2 + c1X + c0 be an irreducible
polynomial over Fp and η, η′ be roots of c(X). Fix d = 2,
Fp(η′)/Fp to be the extension and α = −c−10 in Theorem V.1
and let S be the corresponding isotropic subspace. Then the
image of S under the map (u, v) 7→ u + ηv is an ideal of
the cyclotomic ring Fp(η)[X]/(Xn − 1) and its generator is
given by the polynomial g(X)h(X, η) where g, h satisfies the
properties in Theorem IV.4. Moreover the centraliser S also
maps to an the ideal generated by h.

As before, we call g · h as the canonical factorisation
associated with the above mentioned t-Frobenius codes. We
also call the BCH distance of h to be the BCH distance of C.



Theorem V.3. Let g(X) · h(X, η) be the canonical factorisa-
tion associated with a t-Frobenius code C as in Theorem V.1.
The stabiliser dimension of C is deg(g). If the BCH distance
of h is δ then C is δ-pure and hence has distance at least δ.

As a demonstration of our construction we list (Table I)
some explicit examples of codes where the characteristic p
of the underlying finite field is 2. The distance given in this
table is the BCH distance. The actual distance can be larger.
Canonical factors and their roots are given in [14]. We have
both linear and non-linear codes for parameters with dagger
whereas star denotes only nonlinear codes.

Length Parameters
5 [[5,1,3]]
9 [[9,3,3]]*
13 [[13,1,5]]
17 [[17,1,7]] , [[17,9,3]]
19 [[19,1,3]]*
25 [[25,1,4]] , [[25,5,3]]
27 [[27,21,2]]*, [[27,9,3]]*
29 [[29,1,5]]
37 [[37,1,5]]
41 [[41,1,7]] , [[41,21,4]]
53 [[53,1,7]]
57 [[57,21,5]]*, [[57,39,3]]*
61 [[61,1,7]]

65 [[65,5,13]]*, [[65,13,8]] , [[65,17,9]], [[65,17,11]]* ,
[[65,29,7]]† , [[65,41,5]]† , [[65,53,3]]†

67 [[67,1,7]]*
81 [[81,21,4]]*, [[81,75,2]]*
97 [[97,1,9]] , [[97,49,5]]
99 [[99,69,3]]*

TABLE I
EXPLICIT EXAMPLES OF FROBENIUS CODES OVER F2

VI. DECODING

Let C be a t-Frobenius code based on a degree d extension
Fp(η) as in Theorem V.1. Let the code C have length n and
BCH distance δ = 2τ + 1. Much like in the classical case,
we show that there is an poly(n) time quantum algorithm to
correct any quantum error of weight at most τ . We use two key
algorithms: (1) Kitaev’s phase estimation [17, 5.2] algorithm
and (2) The Berlekamp decoding algorithm [18, p-98,6.7] for
classical BCH codes.

Theorem VI.1 (Berlekamp). Let h(X) be a factor of Xn−1
of BCH distance δ = 2τ + 1 over a finite field Fq , q and n
coprime. Let e(X) be any polynomial of weight at most τ over
Fq . Given a polynomial r(X) = e(X) mod h(X), there is a
polynomial time algorithm to find e(X).

Let the canonical factorisation of the C be g · h so that
its isotropic subspace is generated by the pair (g, ag) where
a = σi(αη) mod σi(h). Assume that we transmitted a
quantum message |ϕ〉 ∈ C over the quantum channel and
received the corrupted state |ψ〉 = UuVv|ϕ〉, where the vectors
u and v are unknown but fixed for the rest of the section. We
show that using quantum phase finding we can recover the
polynomial αηu(X−1)− v(X−1) mod h without disturbing
|ψ〉. Provided the joint weight w(u,v) ≤ τ we can now find
u and v using Berlekamp algorithm. The sent message is

recovered by applying the inverse map V †vU
†
u on |ψ〉. Hence

we have the following theorem about decoding.

Theorem VI.2. Let C be a t-Frobenius code, as in Theo-
rem V.1, of length n and BCH distance δ = 2τ + 1. There is
quantum algorithm that takes time polynomial in n to correct
errors of weight at most τ .

VII. CONCLUSION

In this paper, we studied cyclic stabiliser codes of length
dividing pt + 1 over Fp. It is natural to ask whether the
construction can be generalised for arbitrary code length. For
higher degree extensions the gap between actual and BCH
distance could be significant. Therefore, it would be interesting
to find a better lower bound and in particular to know whether
Berlekamp like algorithms can be used to decode up to that
bound. Unlike previous definition of cyclicity, our definition
is applicable to non-stabiliser codes as well. An open problem
is to construct cyclic non-stabiliser codes.
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