
Can Quantum Search Accelerate Evolutionary Algorithms?

Daniel Johannsen
Max Planck Institute for Informatics

Department of Algorithms and Complexity
Saarbrücken, Germany

daniel.johannsen@mpi-inf.mpg.de

Piyush P Kurur∗
Dept of Comp. Sci. and Engg

Indian Institute of Technology Kanpur
Kanpur UP, India 208016

ppk@cse.iitk.ac.in

Johannes Lengler
Department of Mathematics

Saarland University
Saarbrücken, Germany

johannes.lengler@math.uni-sb.de

ABSTRACT
In this article, we formulate for the first time the notion
of a quantum evolutionary algorithm. In fact we define a
quantum analogue for any elitist (1+1) randomized search
heuristic. The quantum evolutionary algorithm, which we
call (1+1) quantum evolutionary algorithm (QEA), is the
quantum version of the classical (1+1) evolutionary algo-
rithm (EA), and runs only on a quantum computer. It uses
Grover search [13] to accelerate the search for improved off-
springs.

To understand the speedup of the (1+1) QEA over the
(1+1) EA, we study the three well known pseudo-Boolean
optimization problems OneMax, LeadingOnes, and Dis-
crepancy. We show that although there is a speedup in the
case of OneMax and LeadingOnes in the quantum setting,
the speedup is less than quadratic. For Discrepancy, we
show that the speedup is at best constant.

The reason for this inconsistency is due to the difference
in the probability of making a successful mutation. On the
one hand, if the probability of making a successful mutation
is large then quantum acceleration does not help much. On
the other hand, if the probabilities of making a successful
mutation is small then quantum enhancement indeed helps.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

∗Work done on a visit to the Max Planck Institute for In-
formatics (MPII) funded by MPII and Research I project
(NRNM/CS/20030163)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

General Terms
Theory, Algorithms

Keywords
Running time analysis, Quantum Algorithm, Theory

1. INTRODUCTION
One of the most prominent computational problems which

a quantum algorithm solves more efficiently than classical al-
gorithms is searching in an unordered database. In his sem-
inal work [13], Grover gave an algorithm which can search
in an unordered data base of N elements in time propor-
tional to

√
N , whereas any classical algorithm requires time

proportional to N .
Following this result, algorithms based on Grover’s search

have drawn much attention in the last decade. Moreover,
there are many problems for which specialized algorithms
have been designed, such as searching [13, 7], Element Dis-
tinctness [19], Minimum-Finding [12] and many others (e.g.,
[10, 5, 23]).

Grover’s search is known to be optimal [4, 22] when the
underlying search space has no structure. Grover’s search
can be thought of as evaluating the boolean function OR on
N bits. For evaluating certain boolean functions like XOR,
quantum algorithms give no advantage over classical ones —
both have a query complexity1 of Θ(N) [2, 3].

Optimization problems, which is the topic of interest of
this paper, have also received much attention in the quan-
tum setting. Using Grover’s algorithm, Dürr, Heiligman,
Høyer, and Mhalla [11] have shown that it is possible to find
the global optimum of a black-box optimization problem on
the search space {0, 1}n in an expected number of O(2

n/2)

queries. Moreover, a matching lower bound of Ω(2
n/2) for

all possible quantum algorithms exists [22].
In addition, if there is enough structure in the search

space, better bounds can be shown. For example on general

1In the standard literature on the theory of evolutionary
algorithms the term optimization time is used instead of the
term query complexity. Here we use the latter term since in
the context of our investigations it seems more intuitive to
us.

RLS / RLS∗ / (1+1) EA / (1+1) EA∗ QLS / (1+1) QEA QLS∗ / (1+1) QEA∗

OneMax Θ(n logn) Θ(n) Θ(n)

LeadingOnes Θ(n2) Θ(n
3/2) Θ(n2)

Disc Θ(
√
n) Θ(

√
n) Θ(

√
n)

Table 1: A comparison of the expected optimization times (query complexities) between RSHs and QSHs on
the pseudo-Boolean objective functions OneMax, LeadingOnes, and Disc.

graph-based search spaces, Magniez, Nayak, Roland, and
Santha [15, Theorem 3] have shown that if the Markov chain
associated with the random walk on the space is ergodic,
significant improvement in the expected query complexity
is possible provided that the spectral gap is large. Further-
more, if the underlying quantum random walk is symmet-
ric, superior problem-specific quantum algorithms are avail-
able [21, 16].

In this article, we consider quantum versions of elitist
(1+1) randomized search heuristics (RSHs), that is, heuris-
tics that successively generate candidate solutions according
to some distribution depending only on the current candi-
date solution and select the candidate solution if and only
if there is an improvement. Since the Markov processes un-
derlying these algorithms are not ergodic and far from sym-
metric, the setting of quantum random walks as in [21, 16,
15] does not apply.

An elitist evolutionary algorithm for an optimization prob-
lem can never move from a solution of higher objective value
to a solution of smaller objective value. However all quan-
tum operations, other than measurements, are required to
be reversible. Thus, in order to simulate the behavior of an
elitist (1+1) RSH, it is necessary to perform a measurement
after every elitist selection step, basing the further decisions
of the algorithm on the outcome of this measurement.

Given a finite search space S, typically encoded as n-bit
strings, and an objective function f from S to R, we want to
compute an optimum (i.e., either a maximum or a minimum)
of f . Such optimization problems are called pseudo-Boolean
optimization problem. The elitist (1+1) RSHs we consider
work in the following way. They start with a candidate solu-
tion x0 and repeatedly improve the solution by performing
the following two steps:

(1) generate a new solution y according to a distribution
px(y) depending on the current solution x;

(2) if the new solution y is better then retain it, otherwise
discard it.

Thus, elitist (1+1) RSHs only differ in the nature of the
distribution px. For example, Randomized Local Search
(RLS) selects an index i at random and flips the bit xi to
get the new candidate solution whereas the (1+1) Evolu-
tionary Algorithm (EA) flips each bit xi with probability
1/n. We will indicate algorithms that retain solutions of
equal fitness by ∗ (e.g. RLS∗). In the conclusion we discuss
the differences.

The main idea of the paper is to use quantum probability
amplification, which is a reformulation of Grover’s search [8],
to speed up the generation phase, i.e., step (1). Instead
of picking a new candidate solution directly from the dis-
tribution, which is what is done classically, we amplify the
probability of getting a better solution to say a constant 1/2

using quantum probability amplification (see Section 2). If
px =

∑
f(y)>f(x) px(y) is the probability to obtain a better

solution (assuming a maximization problem) from a can-
didate solution x in the classical setting, then in order to
do so the quantum probability amplification requires only
Θ
(
1/
√
px
)

queries to f in expectation as opposed to 1/px
in the classical setting. We call this quantum variant of
RSH a Quantum Search Heuristic (QSH). In particular, we
call the quantum variants of RLS and EAs Quantum Lo-
cal Search (QLS), and Quantum Evolutionary Algorithms
(QEAs). These RSHs can only run on a quantum computer.

The quantum local search which we define here is a re-
stricted version of the quantum algorithm by Aaronson [1]

which first chooses Θ(n
1/32

2n/3) search points uniformly at
random and then uses Grover search to determine the op-
timal initial search point among them. The algorithm of
Aaronson then proceeds exactly like ours. However, our al-
gorithm does not attempt to optimize on the starting point,
because (i) the runtime of such an optimization would dom-
inate the runtimes of our algorithms by orders of magnitude
and (ii) the classical RSHs we compare with do not attempt
to do so either.

There are two other streams of work which sound similar
to our work but are in fact not at all related. Our results
on QSHs and QEAs are significantly different from that of
Quantum-Inspired Evolutionary Algorithms (QIEAs) as in-
troduced in [14]. QIEAs are classical algorithms where the
mutation and selection steps, though classical, are inspired
from quantum operations. However our mutation process is
genuinely quantum and cannot be implemented on a clas-
sical computer. On the other hand, our algorithms are not
attempts to apply genetic programming techniques to better
design quantum algorithms unlike for example the work of
Spector et. al. [20] where the “code” of an ordinary quantum
algorithm is optimized by an evolutionary algorithm. To the
best of our knowledge, the (1+1) QEA investigated here is
the first attempt to generalize evolutionary algorithms to
the quantum setting.

The general bound of Θ(2
n/2) for expected query com-

plexity in optimizing an arbitrary pseudo-boolean function
in the black-box model also applies to QSHs. However, we
may ask whether QSHs also experience a quadratic speedup
over ordinary RSHs. In order to answer this question, we
follow the approaches of [6] and [9] and study the behav-
ior of QLS and the (1+1) QEA on specific pseudo-Boolean
optimization problems.

In particular, we study the query complexity of these
QSHs to maximize the objective function LeadingOnes and
to minimize the objective functions OneMax and Disc. In
all three cases, the speedup over the their classical counter-
parts are not quadratic. Moreover, it differs for each of the
problems. As can be seen in Table 1, the speedup is by a

factor of Θ(logn) for OneMax and by Θ(
√
n) for Leadin-

gOnes, while there is no asymptotic speedup for the func-
tion Disc.

We now give a broad reason for the lack of speed up in
certain cases. The quantum acceleration does not differ form
its classical counter part in the statistical nature of the can-
didate solutions picked on its way to the optimal solution. It
speeds up by reducing the expected time required for a suc-
cessful mutation. For LeadingOnes, it is rather hard to find
the next search point, so there is a substantial speedup. On
the other hand, for Disc it is very easy to find a better search
point: the expected time for improving the fitness function
is constant, and so there is no any asymptotic speedup. On
OneMax the performance improvement, though present, is
less that that of LeadingOnes.

Summing up, we see that quantum search may speed
up evolutionary algorithms in some cases. It may give a
quadratic speedup at most, and there are problems which
are substantially accelerated by quantum search. However,
it depends on the specific problem how much is really gained,
and for some problems there is no improvement in the ex-
pected running time at all. In Lemma 9, we give a precise
statement that enables us to analyze the benefits of quantum
search purely in non-quantum terms.

2. PROBABILITY AMPLIFICATION
In this section we describe the Quantum search algorithm

and its reformulation quantum probability amplification in a
form that is suitable for our purpose. As before, let S denote
the set {0, 1}n of all n-bit strings. Let S0 be a subset of S for
which we are given a membership oracle, i.e. we are given
a oracle M from S to {0, 1} such that S0 = {x|M(x) = 1}.
Our task is to search for a string x0 in S0 using queries to M .
In this setting, we are interested in minimizing the number
of queries made to M .

In an important breakthrough, Grover [13] gave a quan-
tum algorithm to search for such an element x0 ∈ S0 that
makes only

√
|S|/|S0| queries to the oracle M . One needs

to, however, make the oracle M work for quantum states.
The standard approach, which we describe briefly for com-
pleteness, is to consider the membership oracle as unitary

operator UM on the n-qubit Hilbert spaceH = C2⊗
n

defined
as

UM |x〉 = (−1)M(x) |x〉 .

One application of this unitary operator UM is considered
as a single query to the membership oracle.

Let N denote the cardinality of the search space S, and
let the cardinality of the set S0 be M . During initializa-
tion, Grover’s quantum search algorithm prepares the uni-
form superposition |ψ0〉 = 1/

√
N
∑

x∈S |x〉. The algorithm
iteratively applies the Grover step, a unitary operator which
we denote by G, to |ψ0〉. Let |ψt〉 denote the state after t ap-
plications of G, i.e. |ψt〉 = Gt |ψ0〉. If we choose some appro-

priate t in O(
√
N/M) then on measuring the state |ψt〉 we

obtain an element x ∈ S0 with constant probability. More
precisely, if we write the state as |ψt〉 =

∑
x∈S αx(t) |x〉,

then for t = O(
√
N/M) we have

∑
x∈S0 |αx(t)|2 is a con-

stant (say 1/2). The exact form of the Grover step G is
not relevant (for details see the text book of Nielsen and
Chuang [18, Chapter 6]) but the crucial point is that G can
be constructed using one application of the unitary opera-

tor UM . Hence the Grover search makes
√
N/M queries to

the oracle.
Grover search starts with the uniform superposition as

a priori there is no specific reason to prefer one bit string
over the other. Instead if we start the search algorithm with
the state |ψ0〉 =

∑
αx |x〉, then running time will be

√
1/p

where p =
∑

x∈S0 |αx|2 is the probability of picking x ∈ S0
had we measured the initial state |ψ0〉 directly. This refor-
mulation due to Brassard et al [8] is often called the quantum
probability amplification or quantum amplitude amplification
as a quantum algorithm is able to amplify the probability
by making just

√
1/p queries as opposed to 1/p required by

a classical algorithm.
Grover’s search algorithm, however, comes with a caveat.

One needs to stop the Grover iteration after Θ(
√
N/M)

steps, for otherwise the probability of getting a favorable
x0 ∈ S0 actually deteriorates. Thus it appears as if without
knowing the count |S0|, or in the case of probability am-
plification, the probability p of sampling an x ∈ S0 under
the given distribution, one cannot use Grover search. How-
ever, using phase estimation, Brassard et al [8] gave a way
to overcome this difficulty with essentially no change in the
overall running time. From now on, by quantum probability
amplification we mean this generalized version where we do
not need to know the probabilities.

Let |ψ〉 be any state in the Hilbert space of n-qubits and
let |ϕ〉 = G |ψ〉. Let Dψ and Dϕ be the probability distribu-
tions obtained on S on measuring |ψ〉 and |ϕ〉, respectively.
An important property of the Grover operation G is that
the conditional probabilities of obtaining x ∈ S0 given S0 is
the same with respect to either of the distribution Dψ and
Dϕ (see the analysis of Grover’s search in Section 6.1.3 of
Nielsen and Chuang’s book [18]). Thus if we start the Grover
search on the state |ψ0〉 and perform the Grover search, al-
though the probability of obtaining x ∈ S0 improves, the
conditional probabilities of obtaining an element in S0 given
the event that we have obtained an element in S0 remains
the same as in the beginning of the algorithm.

Given a classical sampling algorithm A, consider the quan-
tum algorithm that uses probability amplification starting
with the initial state obtained by sampling an x ∈ S using
the (quantum version of the) sampling algorithm A followed
by measurement and repeats the process until it succeeds in
getting an x0 ∈ S0. Since the probability has been ampli-
fied to a constant we would repeat this process at most a
constant time. Further since the conditional probability of
getting a particular x0 ∈ S0 does not changes after every
Grover step, the quantum algorithm will produce a sample
x0 ∈ S0 with probability Prob[x0|S0]. Hence we have the
following reformulation of probability amplification which is
more suitable for our analysis.

Theorem 1 (Probability Amplification).
Let S be a finite search space, S0 be any subset of S for

which there is a membership oracle M , and A a sampling
procedure that produces a distribution DA on S. Let p be
the probability ProbDA [x ∈ S0] of obtaining a element in S0
on running A. Then there exists a quantum algorithm that
makes on expectation Θ(p−

1/2) queries to the membership or-
acle M and samples an element x0 in S0 with a distribution
Dψ on S0 given by

ProbDψ [x = x0] = ProbDA [x = x0|x ∈ S0] .

The above quantum algorithm uses probability amplifica-

tion starting with the initial state obtained by sampling an
x ∈ S using the (quantum version of the) sampling algo-
rithm A followed by measurement and repeats the process
until it succeeds in getting an x0 ∈ S0. Since the probabil-
ity has been amplified to a constant we would repeat this
process at most a constant time each of which costs

√
1/p

queries. Further since the conditional probability of getting
a particular x0 ∈ S9 does not changes, we have the above
result.

3. THE QUANTUM SEARCH HEURISTIC
In this section we study quantum versions of known elitist

(1+1) Randomized Search Heuristics (short RSHs). Given
any RSH like Random Local Search (RLS) or the (1+1) Evo-
lutionary Algorithm (EA), we use quantum probability am-
plification at each of its mutation and selection steps. We
call such a version a quantum version of the search heuristic.

Let S be the search space and let f be a function from the
search space S to R that we want to maximize. Random-
ized search heuristics like random local search (RLS) and
evolutionary algorithms can be formalized by defining what
is known as its mutation operator.

Definition 2 (Mutation Operator mut).
Let S be a finite search space. A mutation operator mut
over S is a function from S to the space of probability dis-
tributions on S.

The mutation operator mut is essentially the search strat-
egy of the corresponding RSH. With a slight abuse of no-
tation we write mut (x) to denote a sample picked from S
according to the distribution mut (x).

Algorithm 1 (RSH).
The elitist (1+1) randomized search heuristic (RSH) over
the finite search space S with mutation operator mut that
maximizes the objective function f : S → R is the following
iterative algorithm:

1. Start with x0 ∈ S uniformly at random.

2. For each t ≥ 0 iteratively assume that xt had been
picked

(a) Pick yt ∈ S according to the distribution mut (xt).

(b) Set xt+1 = yt if f(yt) > f(xt). Otherwise, discard
yt and repeat (a).

One can define a randomized search heuristic for minimiz-
ing f by changing step 2b of Algorithm 1: set xt+1 = yt if
f(yt) < f(xt).

It follows from our definition of RSH that all the candidate
solutions xt are distinct. Furthermore, for maximization
problem, the sequence of reals {f(xt)}∞t=0 form an increasing
sequence.

Having defined the RSH associated with a mutation op-
erator mut, we now define its quantum version. As before,
we assume (without loss of generality) that our task is to
maximize f . We can think of the Step 2a of Algorithm 1 as
follows: Generate a distribution on S according to mut (xt)
and sample a candidate solution yt out of it. In the quantum
version, we do not pick a yt directly from the distribution
mut (xt). Instead we amplify the probability of getting a fa-
vorable yt using quantum probability amplification and then
measure to obtain yt. For this we need a membership oracle

and the objective function gives us just that. Given f , we
define for each x ∈ S, a membership oracle Mf,x as follows:

Mf,x(y) =

{
1 if f(y) > f(x),

0 otherwise.

We now define elitist (1+1) Quantum Search Heuristics
(QSH) associated with a mutation mut.

Algorithm 2 (QSH).
The elitist (1+1) quantum search heuristic (QSH) over the
finite search space S with mutation operator mut that max-
imizes the objective function f : S → R is the following
iterative algorithm:

1. Start with x0 ∈ S uniformly at random.

2. For each t ≥ 0 iteratively assume that xt had been
picked. Sample xt+1 according to sampling procedure
for Theorem 1 with search space space S, membership
oracle Mf,xt , and sampling procedure mut (xt).

Instead of the rather strong condition “f(yt) > f(xt)” for
accepting a new search point in Step 2.(b), often the weaker
condition “f(yt) ≥ f(xt) with yt 6= xt” is chosen. This
results in variants of the two above algorithms which we call
RSH∗ and QSH∗.

Algorithm 3 (RSH∗ and QSH∗).
By RSH∗, we denote a RSH where in Step 2.(b) the condition
”f(yt) > f(xt)” is replaced by ”f(yt) ≥ f(xt) and yt 6= xt”.

By QSH∗, we denote a QSH where in Step 2. the mem-
bership oracle Mf,xt is replaced by the membership oracle

M∗f,x(y) =

{
1 if f(y) ≥ f(x) and y 6= x,

0 otherwise.

It is important to note that Theorem 1 implies that the
probability that the algorithm takes some fixed trajectory
x0,x1, . . . ,xt through the search space is exactly the same
in both the RSH and is quantum counterpart QSH. The only
place where they differ is in the expected time required by
them to make an improvement from xi to xi+1.

We are interested in the query complexity of the RSHs and
QSHs as defined above.

Definition 3 (Query Complexity).
Let S be a search space with objective function f : S → R
and mutation operator mut. The query complexity of the
corresponding RSH or QSH is the random variable that de-
notes the number of queries until the RSH or QSH has found
an optimal search point. A query of a RSH is an evaluation
of f and a query of a QSH is a call to the membership oracle
associated to f .

Another random quantity of interest is the number of im-
provements until a RSH or QSH has found an optimum.

Definition 4 (improvement number T).
Let S be a search space with objective function f : S → R
and mutation operator mut. The improvement number T
of the corresponding RSH or QSH is the random variable
that denotes the first point in time t such that xt is optimal
with respect to f .

Note that T indeed is the number of improvements in
the algorithm since t increases only if the objective function
increases.

In order to relate the query complexity to the improve-
ment number, we need the notion of transition probabilities.

Definition 5 (Transition Probability pt).
Let S be a search space with objective function f : S → R
and mutation operator mut.

For all t ∈ N = N0, the transition probability pt at time t
of the corresponding RSH is the probability that mut(xt) is
an improvement, that is,

pt = Prob[f(mut(xt)) > f(xt)] .

For a classical RSH, the transition probability tells us how
likely we are to advance from xt to xt+1 by a single query
to f . Therefore, p−1

t equals the expected number of queries
needed to advance from xt to xt+1. This observation leads
us to the following definition.

Definition 6 (TRSH).
Let S be a search space with objective function f : S → R
and mutation operator mut.

The estimated query complexity TRSH of the correspond-
ing RSH is the random variable

TRSH =
∑
t≤T

p−1
t .

By the discussion above, we obtain the following lemma.

Lemma 7. Let S be a search space with objective function
f : S → R and mutation operator mut. Then it holds for
the corresponding RSH that the expected query complexity
equals the expected estimated query complexity.

Now let us consider the QSH. Theorem 1 tells us two
things. Firstly, if we fix an x and a t, then the probability
Prob(xt = x) is the same for the RSH and the QSH. In
particular, the transition probability pt does not change if
we switch to QSH. Secondly, the expected number of queries

needed to advance from xt to xt+1 is in Θ(p
−1/2
t). This leads

to the following definition.

Definition 8 (TQSH).
Let S be a search space with objective function f : S → R
and mutation operator mut.

The estimated query complexity TQSH of the correspond-
ing QSH is the random variable

TQSH =
∑
t≤T

p
−1/2
t .

Again, the discussion above yields us the following lemma.

Lemma 9. Let S be a search space with objective function
f : S → R and mutation operator mut. Then it holds for the
corresponding QSH that the expected query complexity is of
the same order as the expected estimated query complexity.

Finally, we introduce the two RSHs which we compare to
their quantum versions: Randomized Local Search (RLS)
and the (1+1) Evolutionary Algorithm (EA). We do this
by defining their mutation operators such that the quantum
version follows directly.

Definition 10 (RLS and the (1+1) EA).
Randomized Local Search (RLS) and the (1+1) Evolution-
ary Algorithm (EA) are the elitist (1+1) randomized search
heuristics associated with the mutation operators mutRLS

and mutEA, respectively, which are defined as follows.

• mutRLS(x) with x ∈ {0, 1}n is the probability distribu-
tion on {0, 1}n obtained by flipping one bit of x uni-
formly randomly.

• mutEA(x) with x ∈ {0, 1}n is the probability distri-
bution on {0, 1}n obtained by flipping each bit of x
independently with probability 1/n.

For the rest of the paper, we fix the search space S to
be the set {0, 1}n of bit-strings of length n. A bit-string
in S will be denoted by bold faced Latin letters like x, y
etc. In particular, xt will denote the search point of the
corresponding RSH or QSH after t improvements, and t runs
from 0 to T , which is the total number of improvements. The
i-th bit of a bit-string x will be denoted by x(i).

4. ONEMAX
The pseudo-Boolean function OneMax counts the num-

ber of one-bits in a bit-string x ∈ {0, 1}n, that is, let

OneMax(x) :=

n∑
i=1

x(i) . (4.1)

The following theorem can be deduced from the results
and proofs in [9].

Theorem 11. Let {xt}t∈N be the search points generated
by the (1+1) EA or RLS minimizing OneMax. Then the
expected query time is in Θ(n log n).

We show that the expected query time in the quantum
version decreases only by a logarithmic factor.

Theorem 12. Let {xt}t∈N be the search points generated
by the (1+1) QEA or QLS minimizing OneMax. Then the
expected query time is in Θ(n).

Proof. Let us first consider QLS. For all t ≥ 0, let kt =
OneMax(xt) be the number of one-bits in xt.

Consider t ≥ 1. The elements of St are precisely those that
are obtained from xt−1 by flipping a one-bit. Therefore, St
contains exactly kt−1 elements, one for every one-bit in xt−1.
Therefore the probability that mut (xt−1) ∈ St equals pt =
kt−1/n. Furthermore, since exactly one one-bit is flipped,
we have kt = kt−1 − 1. Recursively, we see kt = k0 − t, and
thus T = k0. Hence,

E[TQSH | k0] =

k0∑
t=1

p
−1/2
t =

k0∑
t=1

√
n

k0 − t+ 1
=

k0∑
t=1

√
n√
t
.

Therefore, since
∑k0
t=1 t

−1/2 ∈ Θ
(∫ k0

1
x−

1/2dx
)
, it holds

that E[TQSH | k0] ∈ Θ(
√
k0 n).

Since x0 is chosen uniformly at random from {0, 1}n it
holds that k0 ≥ n/2 with probability at least 1/2. There-
fore, E[TQSH] = Ω(n). On the other hand, k0 ≤ n, and
so E[TQSH] = O(n).

Now, let us turn to (1+1) QEA with kt as for the QLS.
Let t ≥ 1. First note that all vectors in St are obtained
from xt−1 by flipping at least one one-bit. Therefore, by the
union bound

pt ≤
kt−1

n
,

as at least one of the kt−1 one-bits in xt−1 has to be flipped.
Conversely, the set St contains at least all those boolean

vectors that are obtained from xt−1 by flipping a one-bit
and not flipping any other bit. If we fix a one-bit, then the
probability for this event to happen is

1

n

(
1− 1

n

)n−1

≥ 1

en

Since we have exactly kt−1 one-bits, we obtain the lower
bound

pt ≥
kt−1

en
.

Hence,

T∑
t=1

√
n

kt−1
≤ TQSH ≤

T∑
t=1

√
en

kt−1
,

that is, E[TQSH] ∈ Θ
(√
n · E

[∑T
t=1 k

−1/2
t−1

])
.

We may now rewrite the sum
∑
k
−1/2
t−1 . For ` ∈ {1, . . . , n},

let δ` := 1 if there is a t < T such that kt = `, and δ` := 0
otherwise. Then,

T∑
t=1

k
−1/2
t−1 =

n∑
`=1

δ` · `−1/2

Thus, E[TQSH] ∈ Θ
(√
n ·
∑n
`=1 E[δ`] · `−1/2

)
.

Unfortunately, unlike for the QLS, we may not assume
anymore that kt = kt−1 − 1. Thus we prove an upper and
a lower bound for E[δ`]. The upper bound is trivial, as
E[δ`] ≤ 1.

Next, we show the corresponding lower bound. Let

L := {` ∈ {1, . . . , n} : δ` = 1}.

We may expect that the values in L are fairly evenly
distributed. Nevertheless, we pessimistically assume that
L = {n − |L| + 1, . . . , n} in order to bound

∑
l≥1 δ``

−1/2.

Again,
∑n
`=n−|L|+1 `

−1/2 ∈ Ω
(∫ n

n−|L|+1
x−

1/2dx
)

, and thus

E[TQSH] ∈ Ω
(√

n · E
[√
n−

√
n− |L|+ 1

])
. (4.2)

To bound the size of L, we consider the expected difference
between kt−1 and kt. Conditioned on the event that at least
one of the one-bits in xt−1 flips, the difference kt−1−kt is at
most the number of further one-bits in xt−1 that flip. Thus,

E[kt−1 − kt] ≤ 1 +
kt−1 − 1

n
≤ 2 and

E[k0 − kt] =

t∑
s=1

E[kt−1 − kt] ≤ 2t .

Hence, E[k0 − kr] ≤ k0/2 for r = bk0/4c. By Markov’s In-
equality [17], this implies that k0 − kr < k0, that is, kr > 0
with probability at least 1/3. Thus with probability at
least 1/3 it holds that |L| ≥ r+1, since the values k0, . . . , kr
all differ.

As we have seen in the case of QLS, also k0 ≥ n/2 holds
with probability at least 1/2. Thus, with a probability
bounded away from zero by a positive constant, |L| ≥ n/6.
Now we can infer E[TQSH] ∈ Ω(n) by substituting this result
in (4.2).

5. LEADINGONES

The pseudo-Boolean function LeadingOnes counts the
number of one-bits preceding the first zero-bit in a bit-string x ∈
{0, 1}n, that is, let

LeadingOnes(x) :=

n∑
k=1

k∏
i=1

x(i) . (5.1)

The following theorem can be deduced from [9].

Theorem 13. Let {xt}t∈N be the search points generated
by the (1+1) EA or RLS maximizing LeadingOnes. Then
the expected query time is in Θ(n2).

The expected query time decreases considerably when we
use quantum acceleration. However, it does not decrease
quadratically.

Theorem 14. Let {xt}t∈N be the search points generated
by the (1+1) QEA or QLS minimizing LeadingOnes. Then

the expected query time is in Θ(n3/2).

Proof. Let us first consider QLS. For all 0 ≤ t ≤ T ,
let kt = OneMax(xt) be the number of one-bits in xt,
and it = LeadingOnes(xt) + 1 be the position of the first
zero-bit in xt (or n+ 1, if no such bit exists).

Consider t ≥ 1. Then St contains exactly one element,
namely the element that is obtained from xt−1 by flipping
the it−1-th bit. Consequently, this element is chosen and
afterwards kt = kt−1 + 1. Thus, T = n− k0 and

E[TQSH | k0] =

n−k0∑
t=1

p
−1/2
t .

Recall that pt is the probability that mut (xt−1) ∈ St.
This event happens if the it−1-th bit is flipped, that is, pt =
1/n. Therefore,

E[TQSH | k0] =

n−k0∑
t=1

√
n =
√
n(n− k0)

Since x0 is chosen uniformly at random from {0, 1}n it holds
by the Chernoff bounds [17] that k0 ≤ 2n/3 with a probabil-
ity bounded away from zero by a positive constant. Hence,
E[TQSH] = Ω(n3/2). On the other hand, k0 ≥ 0, and there-

fore E[TQSH] = O(n3/2).
Now, let us turn to (1+1) QEA with it and kt as for the

QLS. For t ≥ 1, the set St consists of all boolean vectors
that are obtained from xt−1 if the it−1-th bit is flipped and
none of the bits 1, . . . , it−1 − 1 is flipped. The probability
that mut (xt−1) ∈ St is then

pt =
1

n

(
1− 1

n

)it−1−1

Thus, since (1− 1/n)n−1 ≥ e−1 and 0 ≤ it−1 ≤ n,

1

en
≤ pt ≤

1

n
.

Unlike for the QLS, we cannot guarantee kt = kt−1 + 1.
However, we know that it ≥ it−1 + 1. Thus, we have T ≤ n
and

E[TQSH] ≤
n∑
t=1

√
e n ,

that is, E[TQSH] ∈ O(n3/2).

For the corresponding lower bound, we first make the fol-
lowing observation. Let t ≥ 1 and i ≥ it−1 + 1. Since the
probability that x0(i) = 1 is 1/2 and since the i-th bit had
no influence on whether xr ∈ Sr for s ≤ t, the probability
that xt(i) = 1 is as well 1/2 because of the symmetry of the
mutation operator.

For t ≥ 1, we know that xt(it−1) = 0 and xt(i) = 1
for i ≤ it−1 − 1. Moreover, we have just seen that xt(i) = 1
with probability 1/2 for i ≥ it−1 + 1. Thus, for all ` ≥ 1 the
probability that it − it−1 = ` is 2−` and therefore

E[it − it−1] ≤
∑
`≥1

` 2−` = 2 .

Since also E[i0] ≤ 2 for the same reason, E[it] ≤ 2(t + 1)
holds for all t ≥ 0. Thus E[ibn/3c] ≤ 2(n/3 + 1) and the
probability that ibn/3c ≤ n is bounded away from zero by a
constant c > 0. Thus, Prob[T ≥ bn/3c] ≥ c and

E[TQSH] ≥ c · E[TQSH | T ≥ bn/3c] ≥ c bn/3c
√
n ,

that is, E[TQSH] ∈ Ω(n3/2).

6. DISCREPANCY
The pseudo-Boolean function Disc denotes half the dif-

ference in the number of one-bits and zero-bits in a bit-
string x ∈ {0, 1}n of even length n, that is, let

Disc(x) :=
∣∣∣n
2
−OneMax(x)

∣∣∣ . (6.1)

Lemma 15. Let n ∈ N be even and let x ∈ {0, 1}n be
chosen uniformly at random. Then,

E[Disc(x)] ∈ Θ(n
1/2) .

Proof. Let n = 2k. Then, the lemma follows from

E[Disc(x)] = 2

k∑
i=0

(k − i)
(
2k
i

)
2−2k = k

(
2k
k

)
2−2k

and from
(
2k
k

)
∼ 22k/

√
π k due to Stirling’s formula.

For the function Disc, we show that the query-complexity
of the RSHs and QSHs we consider is asymptotically equal.

Theorem 16. Let {xt}t∈N be the search points generated
by the (1+1) EA, RLS, the (1+1) QEA, or QLS minimizing
Disc with a random starting point x0. Then the expected
query time is in Θ(

√
n) in all four cases.

Proof. Without loss of generality, we always assume that
the search point xt contains at least as many zeroes as ones,
i.e. OneMax(xt) ≤ n/2, for the other case follows by a
symmetric argument.

For RLS and (1+1) EA we define the drift Dt as

Dt = E[Disc(xt)−Disc(xt+1)].

We show that for all time steps t the drift satisfies the
inequality

1 ≤ Dt ≤ 2 , (6.2)

i.e., both the search heuristics have a constant drift. By
Theorem 1, the drifts for the quantum algorithms equal the
drifts for the classical algorithms, respectively.

The lower bound is trivial since Disc(xt+1) < Disc(xt).
Furthermore, for the RLS the drift is always 1 since we flip

only one bit in each step. So it remains to prove the upper
bound for (1+1) EA.

Let kt := n − OneMax(xt) be the number of zero-bits
in xt. Then by the triangle inequality, the drift is at most
E[kt − kt+1]. (Actually, it will be strictly smaller because
it may happen that kt+1 < n/2.) The expected difference
E[kt − kt+1] is upper bounded by the expected number of
zero-bits that flip, and even more so by the expected number
of bits that flip at all. Recall that kt+1 is obtained from kt by
flipping each bit with probability 1/n, under the condition
that at least one bit flips. Thus we may conclude

Dt ≤ E[kt − kt+1]

≤ E[# of bit flips from xt to xt+1]

≤ 1 +
∑
i

Prob(i-th bit flips)

= 2 .

Adding up Ds for all 0 ≤ s ≤ t, equation (6.2) yields
bounds for the total drift from x0 to xt, for t ≤ T :

t ≤ E[Disc(x0)]− E[Disc(xt) | T ≥ t] ≤ 2t.

In particular, doing the same process for t = T and com-
puting expected values, we get

E[T] ≤ E[Disc(x0)]−E[Disc(xT)] = E[Disc(x0)] ≤ 2 E[T] ,

which in turn gives

1
2

E[Disc(x0)] ≤ E[T] ≤ E[Disc(x0)].

Now we show that uniformly for all 0 < t ≤ T , the tran-
sition probability pt is bounded by constants. For all t ≥ 0,
let dt := Disc(xt).

For RLS, we have pt = 1/n · (n/2 + dt) ≥ 1/2 for all
t, since the discrepancy decreases whenever a zero-bit is
flipped. Hence, 1/2 ≤ pt ≤ 1.

For the (1+1) EA, St contains at least those boolean
strings obtained from xt−1 by flipping a single zero-bit and
no other bit. Since there are kt−1 ≥ n/2 zero-bits in xt−1,
we find a lower bound for pt:

pt ≥ kt−1 ·
1

n
·
(

1− 1

n

)n−1

≥ 1

2e
.

Thus, we have proven 1
2e
≤ pt ≤ 1 for all 0 < t ≤ T .

Therefore,

E[TRSH] = E[

T∑
t=1

p−1
t] = Θ(E[T]) = Θ(E[Disc(x0)]),

for both RLS and the (1+1) EA. Of course, since pt is

bounded by constants, p
1/2
t is also bounded by constants,

and we may also conclude that

E[TQSH] = E[

T∑
t=1

p
−1/2
t] = Θ(E[T]) = Θ(E[Disc(x0)]).

Finally, by Lemma 15 the expected discrepancy of X0 is
in Θ(n

1/2), so the result follows.

7. CONCLUSION
In this paper, we have presented an approach to evolu-

tionary algorithms on a quantum computer. Essentially, we
keep the mutation and selection process from the classical
setting and use Grover search in order to find an improved
offspring more quickly. Theorem 1 tells us that this does
not affect the behavior of the algorithm except for getting
faster. The approach is universal, i.e., it works for any mu-
tation operator. Lemma 9 gives us an easy way to compute
the expected running time of the quantum algorithms from
non-quantum quantities.

Our method yields at most a quadratic speedup. This
is similar to other general settings like unordered search [4,
22] or query complexity of local search on a graph [1], in
which it is proven or conjectured that quantum comput-
ers can give at most a quadratic speedup. The analyzed
examples OneMax, LeadingOnes, and Disc show that a
substantial speedup is possible (as for LeadingOnes) but
is not guaranteed (as for Disc). The harder it is to improve
the objective function, the better will quantum acceleration
work.

This has a surprising consequence. In order to be able
to move on fitness plateaus, in the Step 2.b) of a RSH the
condition “f(yt) > f(xt)” is often replaced by the condition
“f(yt) ≥ f(xt) and yt 6= xt”. We denote this variant by
RSH∗. In the examples we analyze, this does not make much
difference for the classical case. However, for the quantum
algorithms, the results differ substantially. Due to lack of
space, we summarized the results in Table 1 and omit the
proofs, which are very similar to those we carried out. The
reason for the different results is that by allowing equality
of the objective functions we increase the number of valid
successor states and thus we increase the probability to find
such a state. But quantum enhancement is more powerful
if these probabilities are small. See Lemmas 7 and 9 for a
precise statement. However, there are ways to keep quantum
enhancement powerful and still allow the algorithm to move
to a successor state with unchanged objective value. We
hope to discuss these issues in further work.

We have chosen the problems OneMax, LeadingOnes,
and Disc for two reasons. Firstly, because they demonstrate
a wide range of effects that may occur. Secondly, because
they are easy to analyze. However, these are of course only
toy problems, and we would like to analyze real combinato-
rial problems. We aim to do so in subsequent work.

8. REFERENCES
[1] S. Aaronson. Lower bounds for local search by

quantum arguments. SIAM J. Comput.,
35(4):804–824, 2006.

[2] A. Ambainis. Quantum lower bounds by quantum
arguments. J. Comput. Syst. Sci., 64(4):750–767, 2002.

[3] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and
R. de Wolf. Quantum lower bounds by polynomials. J.
ACM, 48(4):778–797, 2001.

[4] C. H. Bennett, E. Bernstein, G. Brassard, and
U. Vazirani. Strengths and weaknesses of quantum
computing. SIAM J. Comput., 26(5):1510–1523, 1997.

[5] A. Berzina, A. Dubrovsky, R. Freivalds, L. Lace, and
O. Scegulnaja. Quantum query complexity for some
graph problems. In SOFSEM, pages 140–150, 2004.

[6] H.-G. Beyer, H.-P. Schwefel, and I. Wegener. How to

analyse evolutionary algorithms. Theor. Comput. Sci.,
287(1):101–130, 2002.

[7] M. Boyer, G. Brassard, P. Høyer, and A. Tapp. Tight
bounds on quantum searching. Fortschr. Physik,
46(4-5):493–505, 1998.

[8] G. Brassard, P. Høyer, and A. Tapp. Quantum
counting. In ICALP, pages 820–831, 1998.

[9] S. Droste, T. Jansen, and I. Wegener. On the analysis
of the (1+1) evolutionary algorithm. Theor. Comput.
Sci., 276:51–81, 2002.

[10] C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla.
Quantum query complexity of some graph problems.
In ICALP, pages 481–493, 2004.

[11] C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla.
Quantum query complexity of some graph problems.
SIAM J. Comput., 35(6):1310–1328, 2006.

[12] C. Dürr and P. Høyer. A quantum algorithm for
finding the minimum. CoRR, quant-ph/9607014, 1996.

[13] L. K. Grover. A fast quantum mechanical algorithm
for database search. In STOC, pages 212–219, 1996.

[14] K.-H. Han and J.-H. Kim. Quantum-inspired
evolutionary algorithm for a class of combinatorial
optimization. IEEE Trans. Evolutionary Computation,
6(6):580–593, 2002.

[15] F. Magniez, A. Nayak, P. C. Richter, and M. Santha.
On the hitting times of quantum versus random walks.
In SODA, pages 86–95, 2009.

[16] F. Magniez, A. Nayak, J. Roland, and M. Santha.
Search via quantum walk. In STOC, pages 575–584,
2007.

[17] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, New York, NY,
USA, 2005.

[18] M. A. Nielsen and I. L. Chuang. Quantum
Computation and Quantum Information. Cambridge
University Press, Cambridge, United Kingdom, 2000.

[19] M. Santha. Quantum walk based search algorithms. In
TAMC, pages 31–46, 2008.

[20] L. Spector, H. Barnum, H. Bernstein, and N. Swamy.
Finding a better-than-classical quantum and/or
algorithm using genetic programming. In Evolutionary
Computation, volume 3, pages 2239–2246, 1999.

[21] M. Szegedy. Quantum speed-up of markov chain based
algorithms. In FOCS, pages 32–41, 2004.

[22] C. Zalka. Grover’s quantum searching algorithm is
optimal. Phys. Rev. A, 60(4):2746–2751, Oct 1999.

[23] S. Zhang. New quantum algorithms and quantum
lower bounds. PhD thesis, Princeton, NJ, USA, 2006.

