
Representing groups on graphs

Sagarmoy Dutta and Piyush P Kurur

Department of Computer Science and Engineering,

Indian Institute of Technology Kanpur,

Kanpur, Uttar Pradesh, India 208016

{sagarmoy,ppk}@cse.iitk.ac.in

Abstract

In this paper we formulate and study the problem of representing groups on graphs. We
show that with respect to polynomial time turing reducibility, both abelian and solvable
group representability are all equivalent to graph isomorphism, even when the group is
presented as a permutation group via generators. On the other hand, the representability
problem for general groups on trees is equivalent to checking, given a groupG and n, whether
a nontrivial homomorphism from G to Sn exists. There does not seem to be a polynomial
time algorithm for this problem, in spite of the fact that tree isomorphism has polynomial
time algorithm.

1 Introduction

Representation theory of groups is a vast and successful branch of mathematics with applica-
tions ranging from fundamental physics to computer graphics and coding theory [5]. Recently
representation theory has seen quite a few applications in computer science as well. In this
article, we study some of the questions related to representation of finite groups on graphs.

A representation of a group G usually means a linear representation, i.e. a homomorphism
from the group G to the group GL (V ) of invertible linear transformations on a vector space
V . Notice that GL (V ) is the set of symmetries or automorphisms of the vector space V . In
general, by a representation of G on an object X, we mean a homomorphism from G to the
automorphism group of X. In this article, we study some computational problems that arise in
the representation of finite groups on graphs. Our interest is the following group representability
problem: Given a group G and a graph X, decide whether G has a nontrivial representation on
X. As expected this problem is closely connected to graph isomorphism: We show, for example,
that the graph isomorphism problem reduces to representability of abelian groups. In the other
direction we show that even for solvable groups the representability on graphs is decidable using
a graph isomorphism oracle. The reductions hold true even when the groups are presented as
permutation groups. One might be tempted to conjecture that the problem is equivalent to
Graph Isomorphism. However we conjecture that this might not be the case. The non-solvable
version of this problem seems to be harder than graph isomorphism. For example, we were
able to show that representability of groups on trees, a class of graphs for which isomorphism
is decidable in polynomial time, is as hard as checking whether, given an integer n and a group
G, the symmetric group Sn has a nontrivial subgroup homomorphic to G, a problem for which
no polynomial time algorithm is known.

1



2 Background

In this section we review the group theory required for the rest of the article. Any standard
text book on group theory, for example the one by Hall [4], will contain the required results.

We use the following standard notation: The identity of a group G is denoted by 1. In
addition 1 also stands for the singleton group consisting of only the identity. For groups G and
H, H ≤ G (or G ≥ H) means that H is a subgroup of G. Similarly by H EG (or G DH) we
mean H is a normal subgroup of G.

Let G be any group and let x and y be any two elements. By the commutator of x and y,
denoted by [x, y], we mean xyx−1y−1. The commutator subgroup of G is the group generated
by the set {[x, y]|x, y ∈ G}. We denote the commutator subgroup of G by G′. The following is
a well known result in group theory [4, Theorem 9.2.1]

Theorem 2.1. The commutator subgroup G′ is a normal subgroup of G and G/G′ is abelian.
Further for any normal subgroup N of G such that G/N is abelian, N contains G′ as a subgroup.

A group is abelian if it is commutative, i.e. gh = hg for all group elements g and h.
A group G is said to be solvable [4, Page 138] if there exists a decreasing chain of groups
G = G0 ⊲G1 . . .⊲Gt = 1 such that Gi+1 is the commutator subgroup of Gi for all 0 ≤ i < t.

An important class of groups that play a crucial role in graph isomorphism and related
problems are permutation groups. We follow the notation of Wielandt [11] for permutation
groups. Let Ω be a finite set. The symmetric group on Ω, denoted by Sym(Ω), is the group
of all permutations on the set Ω. By a permutation group on Ω we mean a subgroup of the
symmetric group Sym(Ω). For any positive integer n, we will use Sn to denote the symmetric
group on {1, . . . , n}. Let g be a permutation on Ω and let α be an element of Ω. The image of
α under g will be denoted by αg. For a permutation group G on Ω, the orbit of α is denoted
by αG. Similarly if ∆ be a subset of Ω then ∆g denotes the set {αg|α ∈ ∆}.

Any permutation group G on n symbols has a generating set of size at most n. Thus for
computational tasks involving permutation groups it is assumed that the group is presented to
the algorithm via a small generating set. As a result, by efficient algorithms for permutation
groups on n symbols we mean algorithms that take time polynomial in the size of the generating
set and n.

Let G be a subgroup of Sn and let G(i) denote the subgroup of G that fixes pointwise j ≤ i,
i.e. G(i) = {g|jg = j, 1 ≤ j ≤ i}. Let Ci denote a right transversal, i.e. the set of right coset
representative, for G(i) in G(i−1). The ∪iCi is a generating set for G and is called the strong
generating set for G. The corner stone for most polynomial time algorithms for permutation
group is the Schreier-Sims [9, 10, 3] algorithm for computing the strong generating set of a
permutation group G given an arbitrary generating set. Once the strong generating set is
computed, many natural problems for permutation groups can be solved efficiently. We give a
list of them in the next theorem.

Theorem 2.2. Given a generating set for G there are polynomial time algorithms for the
following task.

1. Computing the strong generating set.

2. Computing the order of G.

By a graph we mean a finite undirected graph. For a graph X, V (X) and E (X) denotes
the set of vertices and edges respectively and Aut (X) denotes the group of all automorphisms
of X, i.e. permutations on V (X) that maps edges to edges and non-edges to non-edges.

2



Definition 2.3 (Representation). A representation ρ from a group G to a graph X is a homo-
morphism from G to the automorphism group Aut (X) of X.

Alternatively we say that G acts on (the right) of X via the representation ρ. When ρ is
understood, we use ug to denoted uρ(g).

A representation ρ is trivial if all the elements of G are mapped to the identity permutation.
A representation ρ is said to be faithful if it is an injection as well. Under a faithful action G
can be thought of as a subgroup of the automorphism group. We say that G is representable
on X if there is a nontrivial representation from G to X. We now define the following natural
computational problem.

Definition 2.4 (Group representability problem). Given a group G and a graph X decide
whether G is representable on X nontrivially.

We will look at various restrictions of the above problem. For example, we study the abelian
(solvable) group representability problem where our input groups are abelian (solvable). We
also study the group representability problem on trees, by which we mean group representability
where the input graph is a tree.

Depending on how the group is presented to the algorithm, the complexity of the problem
changes. One possible way to present G is to present it as a permutation group on m symbols
via a generating set. In this case the input size is m + #V (X). On the other hand, we can
make the task of the algorithm easier by presenting the group via a multiplication table. In this
paper we mostly assume that the group is in fact presented via its multiplication table. Thus
polynomial time means polynomial in #G and #V (X). However for solvable representability
problem, our results extend to the case when G is a permutation group presented via a set of
generators.

We now look at the following closely related problem that occurs when we study the repre-
sentability of groups on trees.

Definition 2.5 (Permutation representability problem). Given a group G and an integer n in
unary, check whether there is a homomorphism from G to Sn.

Overview of the results

Our first result is to show that graph isomorphism reduces to abelian representability problem.
In fact we show that graph isomorphism reduces to the representability of prime order cyclic
groups on graphs. Next we show that solvable group representability problem reduces to graph
isomorphism problem. Thus as far as polynomial time Turing reducibility is concerned abelian
group representability and solvable group representability are all equivalent to graph isomor-
phism. As a corollary we have, solvable group representability on say bounded degree graphs
or bounded genus graphs are all in polynomial time.

We then show that group representability on trees is equivalent to permutation representabil-
ity (Definition 2.5). This is in contrast to the corresponding isomorphism problem because for
trees, isomorphism testing is in polynomial time whereas permutation representability problem
does not appear to have a polynomial time algorithm.

3 Abelian representability

In this section we prove that the graph isomorphism problem reduces to abelian group repre-
sentability on graph. Given input graphs X and Y of n vertices each and any prime p > n, we
construct a graph Z of exactly p ·n vertices such that X and Y are isomorphic if and only if the

3



cyclic group of order p is representable on Z. Since for any integer n there is a prime p between
n and 2n (Bertrand’s conjecture), the above constructions gives us a reduction from the graph
isomorphism problem to abelian group representability problem.

For the rest of the section, fix the input graphs X and Y . Our task is to decide whether
X and Y are isomorphic. Firstly we assume, without loss of generality, that the graphs X and
Y are connected, for otherwise we can take their complement graphs X ′ and Y ′, which are
connected and are isomorphic if and only if X and Y are isomorphic. Let n be the number of
vertices in X and Y and let p be any prime greater than n. Consider the graph Z which is the
disjoint union of p connected components Z1, . . . , Zp where, for each 1 ≤ i < p, each Zi is an
isomorphic copy of X and Zp is an isomorphic copy of Y . First we prove the following lemma.

Lemma 3.1. If X and Y are isomorphic then Z/pZ is representable on Z.

Proof. Clearly it is sufficient to show that there is an order p automorphism for Z. Let h be
an isomorphism from X to Y . For every vertex v in X, let vi denote its copy in Zi. Consider
the bijection g from V (Z) to itself defined as follows: For all vertices v in V (X) and each
1 ≤ i < p− 2, let vgi = vi+1. Further let g map vp−1 to vh and vh to v1. It is easy to verify that
g is an automorphism of Z and has order p.

We now prove the converse

Lemma 3.2. If Z/pZ can be represented on Z then X and Y are isomorphic.

Proof. If Z/pZ can be represented on Z then there exists a nonidentity automorphism g of Z
such that order of g is p. We consider the action of the cyclic group H, generated by g, on
V (X). Since g is nontrivial, there exists at least one H-orbit ∆ of V (X) which is of cardinality
greater than 1. However by orbit stabiliser formula [11, Theorem 3.2], #∆ divides #H = p.
Since p is prime, ∆ should be of cardinality p.

We prove that no two vertices of ∆ belong to the same connected component. Assume
the contrary and let α and β be two elements of ∆ which also belong to the same connected
component of Z. There is some 0 < t < p such that αgt = β. We assume further, without
loss of generality, that t = 1, for otherwise we replace g by the automorphism gt, which is also
of order p, and carry out the argument. Therefore αg = β lie in the same component of Z.
It follows then that, for each 0 ≤ i ≤ p − 1, the element αi = αgi is in the same component
of Z, as automorphisms preserve edges and hence paths. However this means that there is a
component of Z that is of cardinality at least p. This is a contradiction as each component of
Z has at most n < p vertices as they are copies of either X or Y .

It follows that there is some 1 ≤ i < p, for which g must map at least one vertex of the
component Zi to some vertex of Zp. As a result the automorphism g maps the entire component
Zi to Zp. Therefore the components Zi and Zp are isomorphic and so are their isomorphic copies
X and Y .

Given two graphs X and Y of n vertices we find a prime p such that n < p < 2n, construct
the graph Z and construct the multiplication table for Z/pZ. This requires only logarithmic
space in n. Using Lemmas 3.1 and 3.2 we have the desired reduction.

Theorem 3.3. The graph isomorphism problem logspace many-one reduces to abelian group
representability problem.

4



4 Solvable representability problem

In the previous section we proved that abelian group representability is at least as hard as
graph isomorphism. In this section we show that solvable group representability is polynomial
time Turing reducible to the graph isomorphism problem. We claim that a solvable group G is
representable on X if and only if #Aut (X) and #G/G′ have a common prime factor, where G′

is commutator subgroup of G. We do this in two stages.

Lemma 4.1. A solvable group G can be represented on a graph X if #G/G′ and #Aut (X)
have a common prime factor.

Proof. Firstly notice that it suffices to prove that there is a nontrivial homomorphism, say ρ,
from G/G′ to Aut (X). A nontrivial representation for G can be obtained by composing the
natural quotient homomorphism from G onto G/G′ with ρ.

Recall that the quotient group G/G′ is an abelian group and hence can be represented on X
if for some prime p that divides #G/G′, there is an order p automorphism for X. However by
the assumption of the theorem, there is a common prime factor, say p, of #G/G′ and #Aut (X).
Therefore, by Cayley’s theorem there is an order p element in Aut (X). As a result, G/G′ and
hence G is representable on X.

To prove the converse, for the rest of the section fix the input, the solvable group G and
the graph X. Consider any nontrivial homomorphism ρ from the group G to Aut (X). Let
H ≤ Aut (X) denote the image of the group G under ρ. We will from now on consider ρ as an
automorphism from G onto H. Since the subgroup H is the homomorphic image of G, H itself
is a solvable group.

Lemma 4.2. The homomorphism ρ maps the commutator subgroup G′ of G onto the commu-
tator subgroup H ′.

Proof. First we prove that ρ(G′) ≤ H ′. For this notice that for all x and y in G, since ρ
is a homomorphism, ρ([x, y]) = [ρ(x), ρ(y)] is an element of H ′. As G′ is generated by the
set {[x, y]|x, y ∈ G} of all commutators, ρ(G′) ≤ H ′. To prove the converse notice that ρ is a
surjection onH. Therefore for any element h ofH, we have element xh of G such that ρ(xh) = h.
Consider the commutator [g, h] for any two elements g and h of H. We have ρ([xg, xh]) = [g, h].
This proves that all the commutators of H are in the image of G′ and hence ρ(G′) ≥ H ′.

We have the following result about solvable groups that directly follows from the definition
of solvable groups [4, Page 138].

Lemma 4.3. Let G be any nontrivial solvable group then its commutator subgroup G′ is a strict
subgroup of G.

Proof. By the definition of solvable groups, there exist a chain G = G0 ⊲G1 . . .⊲Gt = 1 such
that Gi+1 is the commutator subgroup of Gi for all 0 ≤ i < t. If G = G′ = G1 then G = Gi for
all 0 ≤ i ≤ t implying G = 1

We are now ready to prove the converse of Lemma 4.1.

Lemma 4.4. Let G be any solvable group and let X be any graph. The orders #G/G′ and
#Aut (X) have a common prime factor if G is representable on graph X.

5



Proof. Let ρ be any nontrivial homomorphism from G to Aut (X), and let H be the image of
group G under this homomorphism. Since the commutator subgroup G′ is strictly contained
in the group G (Lemma 4.3), order of the quotient group #G/G′ > 1. Furthermore, the image
group H itself is solvable and nontrivial, as it is the image of a solvable group G under a
nontrivial homomorphism. Therefore, the commutator subgroup H ′ is strictly contained in H
implying #H/#H ′ > 1.

Consider the homomorphism ρ̃ from G onto H/H ′ defined as ρ̃(g) = ρ(g)H ′. Since ρ maps
G′ onto H ′, we have that G′ is in the kernel of ρ̃. Therefore, ρ̃ can be refined to a map from
G/G′ onto H/H ′. Clearly the prime factors of #H/H ′ are all prime factors of #G/G′. However,
any prime factor of #H/H ′ is a prime factor of Aut (X), as both H and H ′ are subgroups of
Aut (X). Therefore, the orders of G/G′ and Aut (X) have a common prime factor.

The order of the automorphism group of the input graph X can be computed in polynomial
time using an oracle to the graph isomorphism problem [7]. Further since the automorphism
group is a subgroup of Sn, where n is the cardinality of V (X), all its prime factors are less than
n and hence can be determined. Also since G is given as a table, its commutator subgroup
G′ can be computed in polynomial time and the prime factors of #G/G′ can also be similarly
determined. Therefore we can easily check, given the group G via its multiplication table and
the graph X, whether the order of the quotient group G/G′ has common factors with the order
of Aut (X). We thus have the following theorem.

Theorem 4.5. The problem of deciding whether a solvable group can be represented on a given
graph reduces to graph isomorphism problem.

For the reduction in the above theorem to work, it is sufficient to compute the order of G
and its commutator subgroup G′. This can be done even when the group G is presented as
a permutation group on m symbols via a generating set. To compute #G we can compute
the strong generating set of G and use Theorem 2.2. Further given a generating set for G, a
generating set for its commutator subgroup G′ can be compute in polynomial time [3, Theorem
4]. Therefore, the order of G/G′ can be computed in polynomial time given the generating set
for G. Furthermore, G and G′ are subgroups of Sm and hence all their prime factors are less
than m and can be determined. We can then check whether #G/G′ has any common prime
factors with #Aut (X) just as before using the graph isomorphism oracle. Thus we have the
following theorem.

Theorem 4.6. The solvable group representability problem, where the group is presented as a
permutation group via a generating set, reduces to the graph isomorphism problem via polynomial
time Turing reduction.

5 Representation on tree

In this section we study the representation of groups on trees. It is known that isomorphism
of trees can be tested in polynomial time [2]. However we show that the group representability
problem over trees is equivalent to permutation representability problem (Definition 2.5), a
problem for which, we believe, there is no polynomial time algorithm.

Firstly, to show that permutation representability problem is reducible to group repre-
sentability problem on trees, it is sufficient to construct, given and integer n, a tree whose
automorphism group is Sn. Clearly a tree with n leaves, all of which is connected to the root,
gives such a tree (see Figure 1). Therefore we have the following lemma.

Lemma 5.1. Permutation representability reduces to representability on tree.

6



. . .

Figure 1: Tree with automorphism group Sn

To prove the converse, we first reduce the group representability problem on an arbitrary
tree to the problem of representability on a rooted tree. We then do a divide and conquer on
the structure of the rooted tree using the permutation representability oracle. The main idea
behind this reduction is Lemma 5.5 where we show that for any tree T , either there is a vertex
which is fixed by all automorphism, in which case we can choose this vertex as the root, or
there are two vertices α and β connected by an edge which together forms an orbit under the
action of Aut (T ), in which case we can add a dummy root (see Figure 2) to make it a rooted
tree without changing the automorphism group.

α β α β
γ

Figure 2: Minimal orbit has two elements

For the rest of the section fix a tree T . Let ∆ be an orbit in the action of Aut (T ) on V (T ).
We define the graph T∆ as follows: A vertex γ (or edge e) of T belongs to T∆ if there are two
vertices α and β in ∆ such that γ (or e) is contained in the path from α to β. It is easy to
see that T∆ contains paths between any two vertices of ∆. Any vertex in T∆ is connected to
some vertex in ∆ and all vertices in ∆ are connected in T∆ which implies T∆ is connected.
Furthermore T∆ has no cycle, as its edge set is a subset of the edge set of T . Therefore T∆ is a
tree.

Lemma 5.2. Let g be any automorphism of T and consider any vertex γ (or edge e) of T∆.
Then the vertex γg (or edge eg) is also in T∆.

Proof. Since γ (or e) is present in T∆, there exists α and β in ∆ such that γ (or e) is in the
path between α and β. Also since automorphisms preserve paths, γg (or eg) is in the path from
αg to βg.

Lemma 5.3. The orbit ∆ is precisely the set of leaves of T∆.

Proof. First we show that all leaf nodes of T∆ are in orbit ∆. Any node α of T∆ must lie on a
path such that the endpoints are in orbit ∆. If α is a leaf of T∆, this can only happen when α
itself is in ∆.

We will prove the converse by contradiction. If possible let α be a vertex in the orbit ∆
which is not a leaf of T∆. Vertex α must lie on the path between two leaves β and γ. Also since
β and γ are leaves of T∆, they are in the orbit ∆.

Let g be an automorphism of T which maps α to β. Such an automorphism exists because
α and β are in the same orbit ∆. The image αg = β must lie on the path between βg and γg

and neither βg or γg is β. This is impossible because β is a leaf of T∆.

7



Lemma 5.4. Let γ be a vertex in orbit Σ. If γ is a vertex of the subtree T∆ then subtree TΣ is
a subtree of T∆.

Proof. Assume that ∆ is different from Σ, for otherwise the proof is trivial. First we show that
all the vertices of Σ are vertices of T∆. The vertex γ lies on a path between two vertices of ∆,
say α and β. Take any vertex γ′ from the orbit Σ. There is an automorphism g of T which
maps γ to γ′. Now γ′ = γg lies on the path between αg and βg and hence is in the tree T∆.

Consider any edge e of TΣ. There exists γ1 and γ2 of Σ such that e is on the path from γ1 to
γ2. By previous argument, T contains γ1 and γ2. Since T is a tree, this path is unique and any
subgraph of T , in which γ1 and γ2 are connected, must contain this path. Hence T∆ contains
e.

Lemma 5.5. Let T be any tree then either there exists a vertex α that is fixed by all the
automorphisms of T or there exists two vertices α and β connected via an edge e such that
{α, β} is an orbit of Aut (T ). In the latter case every automorphism maps e to itself.

Proof. Consider the following partial order between orbits of Aut (T ): Σ ≤ ∆ if TΣ is a subtree
of T∆. The relation ≤ is clearly a partial order because the “subtree” relation is. Since there are
finitely many orbits there is always a minimal orbit under the above ordering. From Lemmas 5.3
and 5.4 it follows that for an orbit ∆, if Σ is the orbit containing an internal node γ of T∆ then
Σ is strictly less than ∆. Therefore for any minimal orbit ∆, all the nodes are leaves. This is
possible if either T∆ is a singleton vertex α, or consists of exactly two nodes connected via an
edge. In the former case all automorphisms of T have to fix α, whereas in the latter case the
two nodes may be flipped but the edge connecting them has to be mapped to itself.

It follows from Lemma 5.5 that any tree T can be rooted, either at a vertex or at an edge
with out changing the automorphism. Given a tree T , since computing the generating set
for Aut (T ) can be done in polynomial time, we can determine all the orbits of Aut (T ) by a
simple transitive closure algorithm. Having computed these orbits, we determine whether T has
singleton orbit or an orbit of cardinality 2. For trees with an orbit containing a single vertex
α, rooting the tree at α does not change the automorphism group. On the other hand if the
tree has an orbit with two elements we can add a dummy root as in Figure 2 without changing
the automorphism group. Since by Lemma 5.5 these are the only two possibilities we have the
following theorem.

Theorem 5.6. There is a polynomial time algorithm that, given as input a tree T , outputs a
rooted tree T ′ such that for any group G, G is representable on T if and only if G is representable
on the rooted tree T ′.

For the rest of the section by a tree we mean a rooted tree. We will prove the reduction
from representability on rooted trees to permutation representability. First we characterise the
automorphism group of a tree in terms of wreath product [Theorem 5.9] and then show that
we can find a nontrivial homomorphism, if there exists one, from the given group G to this
automorphism group by querying a permutation representability oracle.

Definition 5.7 (Semidirect product and wreath product). Let G and A be any two group and
let ϕ be any homomorphism from G to Aut (A), then the semi-direct product G⋉ϕA is the group
whose underlying set is G×A and the multiplication is defined as (g, a)(h, b) = (gh, aϕ(h)b).

We use Wn(A) to denote the wreath product Sn ≀A which is the semidirect product Sn⋉ϕA
n,

where An is the n-fold direct product of A and ϕ(h), for each h in Sn, permutes a ∈ An according
to the permutation h, i.e. maps (. . . , ai, . . .) ∈ An to (. . . , aj , . . .) where jh = i.

8



As the wreath product is a semidirect product, we have the following lemma.

Lemma 5.8. The wreath product Wn(A) contains (isomorphic copies of) Sn and An as sub-
groups such that An is normal and the quotient group Wn(A)/A

n = Sn.

For the rest of the section fix the following: Let T be a tree with root ω with k children.
Consider the subtrees of T rooted at each of these k children and partition them such that two
subtrees are in the same partition if and only if they are isomorphic. Let t be the number of
partitions and let ki, for (1 ≤ i ≤ t), be the number of subtrees in the i-th partition. For each
i, pick a representative subtree Ti from the i-th partition and let Ai denote the automorphism
group of Ti. The following result is well known but a proof is given for completeness.

Theorem 5.9. The automorphism group of the tree T is (isomorphic to) the direct product∏t
i=1Wki(Ai).

Proof. Let ω1, . . . , ωk be the children of the root ω and let Xi denote the subtree rooted at
ωi. We first consider the case when t = 1, i.e. all the subtrees Xi are isomorphic. Any
automorphism g of T must permute the children ωi’s among themselves and whenever ωg

i = ωj,
the entire subtree Xi maps to Xj . As all the subtrees Xi are isomorphic to T1, the forest
{X1, . . . ,Xk} can be thought of as the disjoint union of k copies of the tree T1 by fixing, for
each i, an isomorphism σi from T1 to Xi.

For an automorphism g of T , define the permutation g̃ ∈ Sk and the automorphisms ai(g)
of T1 as follows: if ωg

i = ωj then ig̃ = j and ai(g) = σigσ
−1
j . Consider the map φ from Aut (T )

to Wk(A) which maps an automorphism g to the group element (g̃, a1(g), . . . , ak(g)) in Wk(A).
It is easy to verify that φ is the desired isomorphism.

When the number of partitions t is greater than 1, any automorphism of T fixes the root ω
and permutes the subtrees in the i-th partition among themselves. Therefore the automorphism
group of T is same as the automorphism group of the collection of forests Fi one for each
partition i. Each forest is a disjoint union of ki copies of Ti and we can argue as before that
its automorphism group is (isomorphic to) Wki(A). Therefore Aut (T ) should be the direct
product

∏t
i=1 Wki(Ai).

Lemma 5.10. If the group G can be represented on the tree T , then there exists 1 ≤ i ≤ t such
that there is a nontrivial homomorphism from G to Wki(Ai).

Proof. If there is a nontrivial homomorphism from a group G to the direct product of groups
H1, . . . ,Ht then for some i, 1 ≤ i ≤ t, there is a nontrivial homomorphism from G to Hi. The
lemma then follows from Theorem 5.9.

Lemma 5.11. If there is a nontrivial homomorphism ρ from a group G to Wn(A) then there
is also a nontrivial homomorphism from G either to Sn or to A.

Proof. Let ρ be a nontrivial homomorphism G to Wn(A). Since An is a normal subgroup of
Wn(A) and the quotient group Wn(A)/A

n is Sn, there is a homomorphism ρ′ from Wn(A) to
Sn with kernel An. The composition of ρ and ρ′ is a homomorphism from G to Sn.

If ρ′ ·ρ is trivial then ρ′ maps all elements of ρ(G) to identity of Sn. Which imply that ρ(G)
is a subgroup of the kernel of ρ′, that is An. So, ρ is a nontrivial homomorphism from G to An.
Hence there must be a nontrivial homomorphism from G to A.

Theorem 5.12. Given a group G and a rooted tree T with n nodes and an oracle for deciding
whether G has a nontrivial homomorphism to Sm for 1 ≤ m ≤ n, it can be decided in polynomial
time whether G can be represented on T .

9



Proof. If the tree has only one vertex then reject. Otherwise let t, k1, . . . , kt and A1, . . . At be
the quantities as defined in Theorem 5.9. Since there is efficient algorithm to compute tree
isomorphism, t and k1, . . . , kt can be computed in polynomial time. If G is representable on T
then, by Lemma 5.10 and Lemma 5.11, there is a nontrivial homomorphism from G to either
Ski or Ai for some i. Using the oracle, check whether there is a nontrivial homomorphism to
any of the symmetric groups. If found then accept, otherwise for all i, decide whether there is a
nontrivial homomorphism to Ai by choosing a subtree Ti from the ith partition and recursively
asking whether G is representable on Ti. Total number of recursive calls is bounded by the
number of vertices of T . Hence the reduction is polynomial time.

6 Conclusion

In this paper we studied the group representability problem, a computational problem that
is closely related to graph isomorphism. The representability problem could be equivalent to
graph isomorphism, but the results of Section 5 give some, albeit weak, evidence that this might
not be the case. It would be interesting to know what is the exact complexity of this problem
vis a vis the graph isomorphism problem. We know from the work of Mathon [7] that the graph
isomorphism problem is equivalent to its functional version where, given two graphs X and
Y , we have to compute an isomorphism if there exists one. The functional version of group
representability, namely give a group G and a graph X compute a nontrivial representation if it
exists, does not appear to be equivalent to the decision version. Also it would be interesting to
know if the representability problem shares some of lowness of graph isomorphism [8, 6, 1]. Our
hope is that, like the study of group representation in geometry and mathematics, the study of
group representability on graphs help us better understand the graph isomorphism problem.

References

[1] V. Arvind and Piyush P Kurur. Graph Isomorphism is in SPP. In 43rd Annual Symposium
of Foundations of Computer Science, pages 743–750. IEEE, November 2002.

[2] Lázló Babai and Eugene M. Luks. Canonical labeling of graphs. In Proceedings of the
Fifteenth Annual ACM Symposium on Theory of Computing, pages 171–183, 1983.

[3] Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-time algorithms
for permutation groups. In IEEE Symposium on Foundations of Computer Science, pages
36–41, 1980.

[4] Marshall Hall Jr. The Theory of Groups. The Macmillan Company, New York, first edition,
1959.

[5] W. D. Joyner. Real world applications of representation theory of non-abelian groups.
http://www.usna.edu/Users/math/wdj/repn thry appl.htm.

[6] Johannes Köbler, Uwe Schöning, and Jacobo Torán. Graph isomorphism is low for PP.
Computational Complexity, 2(4):301–330, 1992.

[7] R Mathon. A note on graph isomorphism counting problem. Information Processing
Letters, 8(3):131–132, 15 March 1979.

[8] Uwe Schöning. Graph isomorphism is in the low hierarchy. In Symposium on Theoretical
Aspects of Computer Science, pages 114–124, 1987.

10



[9] C. C. Sims. Computational methods in the study of permutation groups. Computational
problems in Abstract Algebra, pages 169–183, 1970.

[10] C. C. Sims. Some group theoretic algorithms. Topics in Algebra, 697:108–124, 1978.

[11] Helmut Wielandt. Finite Permutation Groups. Academic Press, New York, 1964.

11


