
Graph Isomorphism is in SPP

V. Arvind and Piyush P Kurur
Institute of Mathematical Sciences, C.I.T Campus

Chennai 600113, India
email: {arvind,ppk}@imsc.ernet.in

Abstract

We show that Graph Isomorphism is in the complexity class SPP, and hence it is in ⊕P (in fact, it
is in ModkP for each k ≥ 2). We derive this result as a corollary of a more general result: we show that

a generic problem FIND-GROUP has an FPSPP algorithm.
This general result has other consequences: for example, it follows that the hidden subgroup prob-

lem for permutation groups, studied in the context of quantum algorithms, has an FPSPP algorithm.
Also, some other algorithmic problems over permutation groups known to be at least as hard as Graph
Isomorphism (e.g. coset intersection) are in SPP, and thus in ModkP for each k ≥ 2.

1 Introduction

The Graph Isomorphism problem —of testing if two graphs are isomorphic— is a well-studied algorithmic
problem in the class NP. Formally, the decision problem GI can be defined as:

GI = {〈X1, X2〉 | X1 and X2 are isomorphic

graphs}.

Graph Isomorphism has attracted a lot of research because there is no known polynomial-time algorithm for
it and on the other hand there is strong evidence that it is not NP-complete. In [6] it was shown that Graph
Nonisomorphism is in AM implying that GI is in NP ∩ coAM. It follows that GI cannot be NP-complete
unless the polynomial hierarchy collapses to Σp2 [6, 18]. Schöning, who introduced the notion of lowness in
complexity theory, pointed out in [18] that GI is low for Σp2. I.e. GI is powerless as oracle for Σp2.

Subsequently, it was shown in [13] that GI is also low for the class PP (the language class corresponding
to #P). This result is proven using the machinery of GapP functions introduced in the seminal paper of
[7]. In [7] the languages classes SPP and LWPP are introduced as generalizations of Valiant’s class UP. It
is shown in [7] that UP ⊆ SPP ⊆ LWPP, and LWPP is low for PP.

SPP is perhaps the most important and natural of the counting classes. It is known that SPP is in and
low for the classes ⊕P, C=P, PP etc. SPP has a host of other nice properties as well (see [7] for details).
For instance, SPP is characterized exactly as the class of languages low for GapP. In summary, SPP can be
seen as the GapP analogue of UP. In [7] it is also shown that SPP is the smallest reasonable gap-definable
class.

Coming back to [13], the result that GI is low for PP is shown in that paper by proving that GI is in
LWPP. It is also shown in [13] that GA (testing if a given graph has a nontrivial graph automorphism) is
in SPP. It is known that GA is polynomial-time reducible to GI, but the converse is open.

1.1 Summary of new results

In this paper, we show that GI is in the class SPP. This was left as an open question in [13] (also see [7]).

1

As a consequence it follows that GI is in and low for ⊕P (in fact, GI ∈ ModkP for each k ≥ 2), C=P etc.
Previously, only a special case of Graph Isomorphism, namely Tournament Isomorphism, was known to be
in ⊕P.1

What we prove is a more general result: we show that a generic problem FIND-GROUP is in FPSPP as
a consequence of which GI and some other algorithmic problems on permutation groups that are not known
to have polynomial-time algorithms also turn out to be in SPP. In particular, as another corollary, we

show that the hidden subgroup problem (HSP) over permutation groups is in FPSPP. The hidden subgroup
problem is of interest in the area of quantum algorithms.

2 Preliminaries and Notation

Let Σ = {0, 1} be the finite alphabet. Let log denote logarithm to base 2. Let FP denote the class of
polynomial-time computable functions and NP denotes all languages accepted by polynomial-time nonde-
terministic Turing machines.

Let Z denotes the set of integers. A function f : Σ∗ → Z is said to be gap-definable if there is an NP
machine M such that, for each x ∈ Σ∗, f(x) is the difference between the number of accepting paths and
the number of rejecting paths of M on input x. Let GapP denote the class of gap-definable functions [7].
For each NP machine M let gapM denote the GapP function defined by it. The language class PP is defined
as follows: L is in PP if there is an f ∈ GapP such that x ∈ L if and only if f(x) > 0.

The language classes UP, SPP and LWPP are defined using GapP functions [7]. L is in UP if there is an
NP machine M accepting L such that M has at most one accepting path on any input. L is in SPP if there
is an NP machine M such that x ∈ L implies that gapM (x) = 1, and x 6∈ L implies that gapM (x) = 0. L is
in LWPP if there are an NP machine M and h ∈ FP such that x ∈ L implies that gapM (x) = h(0|x|), and
x 6∈ L implies that gapM (x) = 0. For L ∈ SPP (or in LWPP) we say that the language L is accepted by the
machine M . The containments UP ⊆ SPP ⊆ LWPP is shown in [7].

We say that f is in GapPA, for oracle A ⊆ Σ∗, if there is an NPA machine MA such that, for each
x ∈ Σ∗, f(x) is the difference between the number of accepting paths and the number of rejecting paths of
MA on input x. For any oracle A, we can define the standard relativized classes UPA, SPPA, and LWPPA

and we can easily see the containments UPA ⊆ SPPA ⊆ LWPPA for any oracle A.
We say that A ⊆ Σ∗ is low for PP if PPA = PP. In [7] it is shown that every language in LWPP is low

for PP.
Similarly, we say that A ⊆ Σ∗ is low for GapP if GapPA = GapP. Again, it is shown in [7] that A is low

for GapP if and only if A ∈ SPP.
Let M be an oracle NP machine, let A ∈ NP be accepted by an NP machine N . We say that MA makes

UP-like queries to A if on all inputs x, MA(x) makes only such queries y for which N(y) has at most one
accepting path. Effectively, it is like M having access to a UP oracle. We state a useful variant of a result
from [13, 14].

Theorem 2.1 ([13]) Let M be a nondeterministic polynomial-time oracle machine with oracle A ∈ NP
such that MA makes UP-like queries to A then the function h(x) = gapMA(x) is in GapP.

Next, we recall an important property of the class SPP shown in [7].

Theorem 2.2 ([7]) If L is in SPPA for some oracle A ∈ SPP then L ∈ SPP. I.e. SPPSPP = SPP.

The following lemma, which is a straightforward consequence of Theorem 2.1 and of Theorem 2.2, is in
a form useful for this paper.

Lemma 2.3

1Tournament Isomorphism in ⊕P follows because any tournament has an odd number of automorphisms. There are spe-
cial cases of Graph Isomorphism, e.g. Graph Isomorphism for bounded-degree graphs or bounded genus graphs, that have
polynomial-time algorithms.

2

• Suppose L is in SPPA accepted by the nondeterministic polynomial-time oracle machine MA with oracle
A ∈ NP (i.e. x ∈ L implies that gapMA(x) = 1, and x 6∈ L implies that gapMA(x) = 0), such that the
machine MA makes UP-like queries to A, then L is in SPP.

• Suppose a function f : Σ∗ → Σ∗ is in FPA (i.e. f is computed by a polynomial-time oracle transducer

MA) where A ∈ NP, such that the machine MA makes UP-like queries to A, then f is in FPSPP.

2.1 Permutation group preliminaries

In general, Sym(Ω) denotes the symmetric group on the finite set Ω. A permutation group on Ω is a
subgroup of Sym(Ω). For |Ω| = n, in this paper we let Ω = [n] and identify Sym(Ω) with the group Sn of all
permutations on [n] = {1, 2 . . . , n}.

We use letters g, h, . . . , σ, τ, π, . . . with subscripts and superscripts to denote elements of Sn and i, j and
k for the elements of the set Ω = {1, 2 . . . , n}. Subgroups (and in general subsets) of Sym(Ω) will be usually
denoted by capital letters A, G, H etc. We use the following notation which is standard in permutation
group theory [22, 15]. Given g ∈ Sn and i ∈ [n], we denote by ig the image of i under permutation g. The
composition g1g2 of permutations g1, g2 ∈ Sn is defined left to right: i.e. applying g1 first and then g2. More
precisely, ig1g2 = (ig1)g2 for all i ∈ [n]. For subset A ⊆ Sn and x ∈ Ω we use xA to denote the set {xg|g ∈ A}.
In particular if A is a subgroup of Sn, xA is the orbit of x under the action of A on Ω.

For a subset ∆ of [n], let G∆ denote the subgroup of G that fixes each element of ∆. In particular, if
G ≤ Sn then for each i ∈ [n], we let G(i) denote the subgroup {g ∈ G | jg = j for each j ∈ [i]}. G(i) is called
the pointwise stabilizer of [i] in G.

The identity permutation is denoted by 1 (we use 1 to denote the identity of all groups) and the subgroup
consisting of only 1 is denoted 1. The permutation group generated by a subset A of Sn is the smallest
subgroup of Sn containing A and is denoted 〈A〉. We assume that subgroups of Sn are presented by generator
sets. For a generator set A ⊆ Sn, each permutation ψ ∈ A is a list of n ordered pairs 〈i, j〉 ∈ [n]× [n].

For permutation groups G and H, the expression H ≤ G means that H is a subgroup of G (not necessarily
a proper subgroup). For ϕ ∈ G the subset Hϕ = {πϕ : π ∈ H} of G is a right coset of H in G. Two right
cosets of H in G are either disjoint or identical. Thus, the right cosets of H in G form a partition of G
written as G = Hϕ1 + Hϕ2 + . . . + Hϕk. Each right coset of H has cardinality equal to |H| and the set
{ϕ1, ϕ2, . . . , ϕk} is a set of coset representatives of H in G.

As developed by Sims [20], pointwise stabilizers are fundamental in the design of algorithms for per-
mutation group problems. The structure used is the chain of stabilizers subgroups in G given by: 1 =
G(n) ≤ G(n−1) ≤ . . . ≤ G(1) ≤ G(0) = G. Let Ci be a complete set of right coset representatives of G(i)

in G(i−1), 1 ≤ i ≤ n. Then
⋃n−1
i=1 Ci forms a generator set for G. Such a generator set is called a strong

generator set for G [20, 9]. Any g ∈ G has a unique factorization g = g1g2 . . . gn, with gi ∈ Ci.
We now recall two basic algorithmic results concerning permutation groups. Given as input the generator

set S for a permutation group G ≤ Sn, the following two basic algorithmic tasks can be implemented in time
polynomial in n (see e.g. [20, 9] for these and other results and [15, 11] for a comprehensive treatment).

Theorem 2.4

1. For each element i ∈ [n] the orbit of i, defined as {ig | g ∈ G}, can be computed in polynomial time.

2. The tower of subgroups 1 = G(n) ≤ G(n−1) ≤ . . . ≤ G(1) ≤ G can be computed in time polynomial in
n. (I.e. the right coset representative sets Ci for the groups G(i) in G(i−1), 1 ≤ i ≤ n can be computed
in polynomial time giving a strong generator set for each G(i) including G).

3 Computing the least element of a right coset

In this section we describe a simple polynomial-time algorithm that takes as input a permutation group
〈A〉 = G ≤ Sn and a permutation σ ∈ Sn and computes the lexicographically least element of the right coset

3

Gσ of G in Sn. Here, we use the standard lexicographic ordering of permutations in Sn given by the ordering
of the set [n] = {1, 2, . . . , n}. This algorithm is a crucial ingredient in the proof of the main theorem in the
next section.

Theorem 3.1 There is a polynomial-time algorithm that takes as input a permutation group 〈A〉 = G ≤ Sn
and a permutation σ ∈ Sn and computes the lexicographically least element of the right coset Gσ.

Proof.
We describe the easy algorithm and then argue its correctness.

Input: G ≤ Sn, σ ∈ Sn
Output: Lexicographically least element in Gσ

Let G(n) ≤ G(n−1) ≤ . . . ≤ G(1) ≤ G be the tower of subgroups of G where, by Theorem 2.4, the
generator set for each G(i) and the strong generator set for G can be computed in polynomial time;
π0 = σ;
for i := 0 to n− 1 do

let x := i+ 1;

find the element y in xG
(i)

such that yπi is minimum;

{ This can be done in polynomial time as the entire orbit xG
(i)

of x in G(i), which is a set of size at
most n− i, can be computed in polynomial time by applying Theorem 2.4, and finding the minimum
in the orbit takes linear time.};
Let gi ∈ G(i) be such that xgi = y;
πi+1 := giπi;

end
Result: πn

Algorithm 1: Lexicographically least in a Right Coset

Since π0 = σ and G(n−1) = {1}, it suffices to prove the following claim in order to show that the algorithm
computes the lexicographically least element of Gσ.

Claim 3.2 For all 0 ≤ i < n− 1 the lexicographically least element of G(i)πi is in G(i+1)πi+1.

Proof of Claim. Let xH denote the orbit of any point x ∈ [n] under the action of H ≤ Sn. By definition,

πi+1 = giπi, where gi is in G(i) such that gi maps i+1 to y ∈ (i+1)G
(i)

and such that yπi = x is the minimum

element in {zπi | z ∈ (i+ 1)G
(i)}. Since G(i) fixes each element in the set [i] and since gi ∈ G(i), we can see

that for every 1 ≤ k ≤ i , for each g ∈ G(i) and h ∈ G(i+1), we have khπi+1 = kπi+1 = kgiπi = kπi = kgπi .
In particular if ρ is the lex-least element of G(i)πi, every element in G(i+1)πi+1 agrees with ρ on the first i
elements.

Furthermore, for each g ∈ G(i+1) notice that (i + 1)gπi+1 = (i + 1)πi+1 = (i + 1)giπi = x, where x is
defined above. It is clear that G(i+1)πi+1 is precisely the subset of G(i)πi each of whose elements maps i+ 1
to x. Together with the fact that (i+ 1)ρ = x (by the lex-least property of ρ), we get the desired conclusion.

By induction and the above Claim it follows that the lex-least element of Gσ = G(0)π0 is in G(n)πn =
{πn}. Hence πn is the desired lex-least element of Gσ.

We can easily extend the above result to show the following.

Theorem 3.3 There is a polynomial-time algorithm that takes as input a permutation group 〈A〉 = G ≤ Sn
and two permutations τ, σ ∈ Sn, and computes the lexicographically least element of τGσ.

Remark. The above theorem implies, in particular, that the lexicographically least element of a left coset
τG can be computed in polynomial time.

4

4 Graph Isomorphism in SPP

We are ready to prove the main theorem of the paper. Recall that the Graph Isomorphism problem is the
following decision problem: GI = {(X1, X2) | X1 and X2 are isomorphic}. A related problem is AUTO which
is a functional problem: given a graph X as input the problem is to output a strong generator set for Aut(X).
It is well-known from the result of Mathon [16] (see e.g. [14]) that GI and AUTO are polynomial-time Turing
equivalent.

Thus, in order to show that GI ∈ SPP it suffices to show that AUTO ∈ FPSPP. In other words, it suffices
to show that there is a deterministic polynomial-time Turing machine M with oracle A ∈ SPP that takes a
graph X as input and outputs a strong generator set for Aut(X).

We observe here that the problem AUTO itself is one among a class of problems, each of which we will

show is in FPSPP by giving such an algorithm for the following generic problem FIND-GROUP which we
formally describe below:

To each instance 〈x, 0n〉 of FIND-GROUP there is associated an unknown subgroup Gx ≤ Sn for which
there is polynomial time membership test. More precisely, a polynomial-time function MEMB(x, g) is given,
that takes x and g ∈ Sn as input and evaluates to true if and only if g ∈ Gx. The FIND-GROUP problem
is to compute a strong generator set for Gx given 〈x, 0n〉 as input.

Notice that AUTO is an example of the generic FIND-GROUP problem, as checking whether g ∈ Sn is an
automorphism of a graph X on n nodes can be done in time polynomial in n.

Remark. The advantage of solving the generic problem FIND-GROUP is that it allows us to show at one
stroke that several group-theoretic problems apart from GI are all in SPP. In particular, as a corollary to
Theorem 4.1 we will show in the next section that the hidden subgroup problem (of interest in quantum

computing) in the case of permutation groups is also in the class FPSPP.

Theorem 4.1 There is an FPSPP algorithm for the FIND-GROUP problem.

Proof. Let 〈x, 0n〉 be an input instance of FIND-GROUP. The goal is to compute a strong generator set for
Gx ≤ Sn using MEMB as subroutine. As we have fixed the input, we will sometimes drop the subscript and
write G instead of the group Gx.

Our goal is to design an FPSPP algorithm for finding the coset representatives of G(i) in G(i−1) for each
i in the tower of subgroups 1 = G(n−1) ≤ G(n−2) ≤ . . . ≤ G(1) ≤ G(0) = G. Starting with G(n−1), which
is trivial, the algorithm will build a strong generator set for G(i) in decreasing order of i until finally it
computes a strong generator set for G(0) = G. Thus, it suffices to describe how the algorithm will compute
the coset representatives of G(i) in G(i−1) assuming that a strong generator set for G(i) is already computed.
To this end we first define a language:

5

L = {〈x, 0n, S, i, j, π〉 | π is a partial permutation that pointwise fixes 1, . . . , i − 1 and maps i to j, S ⊆
Gx, and 〈S〉 pointwise fixes [i], and ∃ g ∈ G(i−1)

x such that ig = j, lex−least(〈S〉g) and extends π}.
Here, we use lex−least(Hg) for a group H to denote the lexicographically least permutation in the coset

Hg.
Partial permutation π is part of instance 〈x, 0n, S, i, j, π〉, as we will be using L as oracle to do a prefix

search for the lexicographically least g ∈ G(i−1) such that ig = j. We now describe an NP machine N that
accepts L.

Description of Machine N ;
Input: 〈x, 0n, S, i, j, π〉
Verify using MEMB that S ⊆ G(i);
Guess g ∈ Sn;
if g ∈ G(i−1) and ig = j and g extends π and g = lex−least(〈S〉g) then

ACCEPT ;
end
else

REJECT ;
end

Clearly, N is an NP machine that accepts L. The crucial point is that if ig = j then for every element
h ∈ 〈S〉g, ih = j. Also, using the algorithm in Theorem 3.1 the lexicographically least element of 〈S〉g can
be computed in polynomial time.

Claim 4.2 If 〈S〉 = G(i) then the number of accepting paths of N on input 〈x, 0n, S, i, j, π〉 is either 0 or 1.

In general, on input 〈x, 0n, S, i, j, π〉, N has either 0 or |G
(i)|
|〈S〉| .

Proof of Claim. Suppose 〈x, 0n, S, i, j, π〉 is in L and 〈S〉 = G(i). Notice that if for some g ∈ G(i−1) we have
ig = j (for j > i), then 〈S〉g consists of all elements in G(i−1) that map i to j. Thus the only guessed element
g ∈ Sn by the machine N that leads to acceptance corresponds to the unique lexicographically least element
of 〈S〉g.

On the other hand, if 〈S〉 is a proper subgroup of G(i) then we can easily see that G(i)g can be written
as a disjoint union of |G(i)|/|〈S〉| many right cosets of 〈S〉. Thus, in general N would have |G(i)|/|〈S〉| many
accepting paths if 〈x, 0n, S, i, j, π〉 is in L.

We are now ready to describe an FPL algorithm for FIND-GROUP. The algorithm is designed in a way
that it will query L for some 〈x, 0n, S, i, j, π〉 only if 〈S〉 = G(i), thereby ensuring that it makes only UP-like

queries to L. Finally, by Lemma 2.3 we can convert this algorithm to an FPSPP algorithm.

6

Ci := ∅ for every 0 ≤ i ≤ n− 2;
{Ci will finally be a complete set of coset representatives of G(i+1) in G(i). }
Di := ∅ for every 0 ≤ i ≤ n− 2;
Dn−1 = 1;
{Di will finally be a strong generator set for G(i) for each i. }
for i := n− 1 down to 1 do
{ Di is already computed at the beginning of the ith iteration and at the end of the ith iteration we
have Di−1 }
Let π : [i− 1]→ [n] be the partial permutation that fixes all elements from 1 to i− 1
{ in case i = 1 this is the everywhere undefined partial permutation }
for j := i+ 1 to n do

π′ := π[i := j];
if 〈x, 0n, Di, i, j, π

′〉 ∈ L then
{ There is an element in G(i−1) that maps i to j. We will find it by a prefix search that extends
the partial permutation π′

}
for k := i+ 1 to n do

find the element l not in the range of π′ such that
〈x, 0n, Di, i, j, π

′[k := l]〉 ∈ L;
π′ := π′[k := l];

end
{ At this point π′ will be a permutation in Sn}
Ci−1 := Ci−1 ∪ {π′};

end
end
{ At this point Ci−1 is a complete set of coset representatives of G(i) in G(i−1)}
Di−1 = Di ∪ Ci−1

end
Result: D0

Algorithm 2: FPL algorithm CONSTRUCT(〈x, 0n〉)

We claim that a call to the FPL algorithm CONSTRUCT(〈x, 0n〉) outputs a strong generator set D0 for
the group G = Gx. We show this by induction. Initially, Dn−1 = 1 clearly generates G(n−1) = 1. Suppose at
the beginning of the ith iteration it holds that Di is a strong generator set for G(i). It suffices to show that at
the end of the ith iteration Di−1 = Di ∪Ci−1 is a strong generator set for G(i−1). For each j : i+ 1 ≤ j ≤ n,
the query 〈x, 0n, Di, i, j, π

′〉 ∈ L checks if there is an element in G(i−1) that maps i to j. The subsequent
prefix search with queries to L computes the lexicographically least element in G(i−1) that maps i to j.
Furthermore, by Claim 4.2, as Di generates G(i), all queries made to L are UP-like. Thus, at the end of the
ith iteration Ci−1 is a complete set of coset representatives for G(i) in G(i−1) and hence Di−1 is a strong
generator set for G(i−1). Thus at the end D0 is a a strong generator set for G. Therefore, we have an FPL

algorithm problem for FIND-GROUP.
Finally, since the FPL algorithm makes only UP-like queries to the NP oracle L, it follows from Lemma 2.3

that FIND-GROUP has an FPSPP algorithm.

Remark. We note that there is alternative way to conceive of an FPSPP algorithm for the FIND-GROUP

problem: we can first design an UPSVSPP algorithm, where the prefix search that we do in CONSTRUCT(〈x, 0n〉)
is replaced by directly guessing a permutation in the right coset (consisting of elements that fix 1 to i − 1
and map i to j) and rejecting along all paths on which we do not guess the lexicographically least element of

the coset. Then, by a general prefix search argument we can see that FPSPP and UPSVSPP are the same

and hence conclude that FIND-GROUP is in FPSPP.

7

As we already noted, GI and AUTO are polynomial-time equivalent and AUTO, being an instance of

FIND-GROUP has an FPSPP algorithm by Theorem 4.1. Since SPPSPP = SPP and SPP ⊆ ModkP for each
k ≥ 2, the next corollary is an immediate consequence.

Corollary 4.3 Graph Isomorphism is in SPP and hence in ModkP for every k ≥ 2.

5 Hidden subgroup problem and other applications

We recall the general definition of the hidden subgroup problem.

Definition 5.1 The hidden subgroup problem HSP has an input instance a finite group G (presented by a
finite generator set) and we are given (in the form of an oracle) a function f from G to some finite set X
such that f is constant and distinct on different right cosets of a hidden subgroup H of G. The problem is
to determine a generator set for H.

Many natural problems like Graph Isomorphism, integer factorization etc, can be cast as a special case
of HSP. An efficient quantum algorithm for the general problem will result in efficient quantum algorithm
for all these. Based on suitable generalizations of Shor’s technique [19], the above problem has efficient
quantum algorithms for the case when G is an abelian group (see e.g. [17] for an exposition). However, the
status of HSP is open for general nonabelian groups, except for some special cases where it is settled (see,
e.g. [10, 12]). In particular, even when we restrict attention to G being the permutation group Sn, it is not
known if HSP has quantum polynomial time algorithms except in special cases.

Independently, it is shown by Fortnow and Rogers [8] that the class BQP of languages that have
polynomial-time quantum algorithms is closely connected with language classes that are low for PP. In
particular, it is shown in [8] that BQP ⊆ AWPP where AWPP is a language class that generalizes both BPP
and LWPP.

Theorem 5.2 [8] BQP ⊆ AWPP and hence BQP is low for PP.

In this section we show as a corollary to Theorem 4.1 that there is an FPSPP algorithm for the HSP

problem over permutation groups.

Theorem 5.3 There is an FPSPP algorithm for the HSP problem over permutation groups, and hence HSP

over permutation groups is low for PP, GapP, ⊕P, C=P etc.

Proof Sketch. We are given (in the form of an oracle) a function f from Sn to a finite set X such that f is

constant and distinct on different right cosets of a hidden subgroup H of Sn. The FPSPP will first compute
f(1) with one query to f . Now, notice that f gives a membership test for the unknown subgroup H, because
a permutation g ∈ Sn is in H if and only if f(g) = f(1). Thus we essentially have a membership test as
required for the FIND-GROUP problem of Theorem 4.1. The result now follows by invoking the algorithm
described in the proof of Theorem 4.1. Lowness for PP also follows as SPP is low for PP.

5.1 Other applications

Using the FPSPP algorithm for the FIND-GROUP problem we can show that other algorithmic problems on
permutation groups [15] which are not known to have polynomial-time algorithms are also in SPP. Among
the different problems mentioned in [15] we pick the following two examples as most other problems are
known to be polynomial time reducible to these.

The input instance to the CONJ-GROUP problem consists of three subgroups 〈S〉 = G, 〈S1〉 = H1, and
〈S2〉 = H2 of Sn, and the problem is to determine if there is a g ∈ G such that gH1g

−1 = H2 (i.e. H1 and
H2 are G-conjugate).

8

A closely related problem NORM has input instance two subgroups G and H of Sn, and the problem is
to determine a generator set for the normalizer subgroup NG(H) = {g ∈ G | gHg−1 = H}. Just as GI and
AUTO are polynomial-time equivalent, it turns out that CONJ-GROUP and NORM are also polynomial-time
equivalent [15].

Theorem 5.4 The problem NORM is in FPSPP and the problem CONJ-GROUP is in SPP.

Proof. We show that NORM is an example of the generic problem FIND-GROUP. The theorem will follow
as a direct consequence of Theorem 4.1. It suffices to observe that given subgroups 〈S〉 = G and 〈T 〉 = H
of Sn, testing if g ∈ NG(H) (i.e. gHg−1 = H) can be carried out in polynomial time. More precisely, it is
clear that gHg−1 = H if and only if gtg−1 ∈ H for every t ∈ T , which can be checked in polynomial time
by Theorem 2.4.

As already mentioned, a consequence of the above theorem is that several other decision problems in
permutation groups (e.g. coset intersection, double coset equality, set transporter) which are polynomial-
time many-one reducible to CONJ-GROUP are also in SPP.

6 Conclusion

In this paper we have shown that Graph Isomorphism is in SPP. We have also shown that several other

problems on permutation groups are in SPP. All these results are byproducts of the FPSPP algorithm for
the problem FIND-GROUP. We would like to know if better upper bounds can be shown for the complexity
of special cases of graph isomorphism especially tournament isomorphism. Specifically, is tournament iso-
morphism in UP? It is known that the automorphisms of a tournaments forms a solvable group and has odd
order. Can this additional property be somehow exploited?

A related problem is Graph Canonization. Let f be a function from the family of finite graphs, G, to itself.
We say that f is a canonization if for every X ∈ G, f(X) ∼= X and for every X1, X2 ∈ G, f(X1) = f(X2) iff
X1
∼= X2. There is an O(nlogn) algorithm for Tournament Isomorphism by giving a canonization procedure

for tournements [3]. The complexity of Graph Canonization is intriguing. The only known upper bound

for the problem is FPNP. It is known that Graph Isomorphism is polynomial-time reducible to Graph
Canonization. Is the converse true, at least for tournaments? Is Graph Canonization for tournaments low
for PP?

Babai and others, in a series of papers [5, 4, 2], developed a theory of black-box groups to study the
complexity of group-theoretic problems in a general setting. The main results in [5, 4, 2] were to put these
problems in NP ∩ coAM or AM ∩ coAM. However, lowness for PP has been addressed only for the case of
solvable black-box groups in [1, 21], where many of these problems are shown to be in SPP. It is interesting
to ask if our approach of showing membership in SPP via finding the lexicographically least element in a
coset can be generalized to black-box groups. More precisely, what is the complexity of finding a canonical
element in the right coset of a black-box group?

References

[1] V. Arvind and N. V. Vinodchandran. Solvable black-box group problems are low for PP. Theoretical
Computer Science, 180(1–2):17–45, 1997.

[2] L. Babai. Bounded round interactive proofs in finite groups. SIAM journal of Discrete Mathematics,
5(1):88–111, February 1992.

[3] L. Babai and E. M. Luks. Canonical labeling of graphs. In Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing, pages 171–183, 1983.

9

[4] L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity
classes. Journal of Computer and System Sciences, 36:254–276, 1988.

[5] L. Babai and E. Szemeredi. On the complexity of matrix group problems I. In Proceedings of the 24th

IEEE Foundations of Computer Science, pages 229–240, 1984.

[6] R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive proofs. Information Processing
Letters, 25:127–132, May 1987.

[7] S. A. Fenner, L. J. Fortnow, and S. A. Kurtz. Gap-definable counting classes. In Structure in Complexity
Theory Conference, pages 30–42, 1991.

[8] L. J. Fortnow and J. D. Rogers. Complexity limitations on quantum computation. In IEEE Conference
on Computational Complexity, pages 202–209, 1998.

[9] M. L. Furst, J. E. Hopcroft, and E. M. Luks. Polynomial-time algorithms for permutation groups. In
IEEE Symposium on Foundations of Computer Science, pages 36–41, 1980.

[10] S. Hallgren, A. Russel, and A. Ta-Shma. Normal subgroup reconstruction and quantum computing
using group representation. In Proceedings of the 32nd ACM Symposium on Theory of Computing,
pages 627–635, Portland, Oregon, 21-23 May 2000.

[11] C. M. Hoffmann. Group-Theoretic Algorithms and Graph Isomorphism. Springer, Berlin, Heidelberg,
1982.

[12] G. Ivanyos, F. Magniez, and M. Santha. Efficient quantum algorithms for some instances of the non-
abelian hidden subgroup problem. In 13th ACM Symposium on Parallel Algorithms and Architectures,
pages 263–270, 2001.

[13] J. Köbler, U. Schöning, and J. Torán. Graph isomorphism is low for PP. Computational Complexity,
2(4):301–330, 1992.

[14] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem: Its Structural Complexity.
Birkhauser, 1993.

[15] E. M. Luks. Permutation groups and polynomial time computations. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 11:139–175, 1993.

[16] R. Mathon. A note on graph isomorphism counting problem. Information Processing Letters, 8(3):131–
132, 15 March 1979.

[17] M Mosca. Quantum Computer algorithms. PhD thesis, Oxford University, 1999.

[18] U. Schöning. Graph isomorphism is in the low hierarchy. In Symposium on Theoretical Aspects of
Computer Science, pages 114–124, 1987.

[19] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.

[20] C. C. Sims. Computational methods in the study of permutation groups. Computational problems in
Abstract Algebra, pages 169–183, 1970.

[21] N. V. Vinodchandran. Counting complexity of solvable black-box group problems. SIAM Journal of
Computing, 33(4):852–869, 2004.

[22] H. Wielandt. Finite Permutation Groups. Academic Press, New York, 1964.

10

